表纸
市场调查报告书
商品编码
1028450

汽车智能座舱设计趋势(2021)

Automotive Smart Cockpit Design Trend Report, 2021

出版日期: | 出版商: ResearchInChina | 英文 255 Pages | 商品交期: 最快1-2个工作天内

价格
  • 全貌
  • 简介
  • 目录
简介

随著座舱软硬件技术的不断演进,智能座舱设计正在从功能性向 "用户体验" 演进。智能驾驶舱正变得更安全、更智能、更舒适。

座舱显示器还是以多屏和大屏为主。 2020-2021年,新兴和传统车企陆续推出多屏、联屏车型。

汽车人机界面的UI设计正在根据实际功能而改变。您拥有的功能越多,您的智能汽车就会越智能,它所基于的数据也就越多。未来,界面交互有望更简洁、3D直觀、更年轻、更透明、数字化、符号化和扁平化。

本报告调查了汽车智能座舱的设计趋势,提供了智能座舱、HMI、智能表面应用、环境光应用、智能触觉反馈技术和主要供应商等设计趋势信息。

目录

第 1 章汽车智能座舱设计思路与趋势

  • 智能座舱设计布局现状
    • 汽车智能座舱概述
    • 汽车智能座舱发展特点
    • 汽车座舱发展趋势
    • 2021年新发布的主要车型座舱配置:概念车型
    • 2020年新发布的主要车型座舱配置:概念车型
    • 概念模型驾驶舱配置
    • 量产车型驾驶舱配置
  • 汽车智能座舱设计发展趋势
    • 智能座舱设计趋势
    • 自动驾驶层面的智能座舱设计趋势

第 2 章汽车智能座舱显示器的设计趋势

  • 驾驶舱显示设计现状
    • 驾驶舱显示布局
    • 驾驶舱显示设计现状
    • 某大公司座舱展示业务布局
    • 座舱集群显示发展方向
    • 某大公司集群展示业务布局
    • 驾驶舱 HUD 的现状
    • 某大公司AR-HUD业务布局
    • AID-全息航空智能显示系统
  • 座舱显示设计趋势

第 3 章汽车智能座舱HMI设计趋势

  • 汽车驾驶舱人机界面设计现状
    • 汽车人机界面概述
    • 汽车人机界面模式的发展历程
    • 国内外OEM的主要HMI模式
    • 汽车人机界面设计模式
    • 汽车 HMI 设计流程
    • 汽车人机界面开发流程
    • 汽车人机界面设计框架
    • 汽车用户体验设计原则
    • 汽车人机界面设计所需的工具
    • 某大公司人机界面设计集成软件工具
    • 主要 OEM HMI 设计供应商
    • 主要机型人机界面供应商
    • 主要 OEM IVIUI 界面功能
    • 界面案例
  • 驾驶舱 HMI 设计趋势
    • 人机界面趋势
    • 汽车 UI 设计趋势
    • Cockpit HMI 工具发展趋势
    • 案例
  • 驾驶舱人机界面设计主要供应商
    • ThunderSoft
    • CANDERA
    • Altia
    • Qt Design
    • Elektrobit (EB)
    • Neusoft HMI Design
    • Valeo
    • Visteon HMI
    • Bosch HMI
    • Faurecia HMI

第 4 章汽车智能表面应用的设计趋势

  • 智能表面技术概述
    • 智能表面概述
    • Smart Surface 产品功能
    • 智能表面配置
    • 智能表面技术:装饰膜形成过程
    • 主要供应商的智能表面产品
    • 智能表面产业链
  • 智能表面技术设计趋势
    • 智能表面设计的趋势
  • 智能表面应用案例
    • 案例
  • 智能表面技术主要解决方案供应商
    • Covestro
    • Canatu
    • TactoTek
    • Yanfeng Automotive Interiors
    • Continental

第 5 章智能座舱环境光应用及设计趋势

  • 室内环境光开发概述
    • 汽车环境灯概述
    • 汽车环境灯分类
    • 汽车环境光配置
    • 汽车环境光范围
    • 室内环境光控制技术
    • 室内环境光体网络架构
    • 室内灯光设计流程
    • 主要OEM车型的环境光配置
    • 室内环境灯的发展演变
    • 全球室内环境灯市场规模
    • 全球室内环境灯分布
    • 全球分布和室内环境光光学技术
    • 室内环境灯产业链
  • 室内环境光发展趋势
  • 室内环境光互动案例

第 6 章汽车智能触觉反馈技术应用趋势

  • 汽车触摸反馈开发概述
    • 触摸反馈技术概述
    • 对触摸反馈技术的需求
    • 触控反馈技术模式
    • 主要触控反馈技术产业链
    • 触摸反馈技术及产品主要供应商
    • 触摸反馈技术和产品的主要一级供应商
    • OEM 触摸反馈技术应用
    • 车载显示触控系统技术路线图
    • 案例
  • 主要汽车微型反馈供应商
    • Tanvas
    • Boreas
    • TDK PowerHap (TM) Piezo Actuator with Haptic Feedback
    • Continental
    • 其他

第 7 章其他新的驾驶舱交互技术

  • 多样化的交互式方向盘设计
  • 最大限度地利用空间
  • 汽车音效
  • 智能健康的座舱布局
目录
Product Code: CYH100

Smart Cockpit Design Trend Research: Moving to the third living space

With the continuous development of cockpit hardware and software technology, intelligent cockpit design is evolving, pivoting from functionality to "user experience". Intelligent cockpits are becoming more and more secure, smart and comfortable.

In terms of perception, the cockpit display is not limited to multi screens and large screens, 3D screens and high-definition screens are also emerging.

For cockpit display, multi screens and large screens still prevail. From 2020 to 2021, emerging automakers and traditional automakers have successively launched a number of models equipped with multiple screens and joint screens. For example, Hongqi E-HS9 was equipped with 8 screens at the end of 2020. In 2021, Human Horizons mass-produced and delivered HiPhi X equipped with 9 screens. At the same time, the screen size in the car is getting larger and larger. The center console of Xingyue L, launched in July 2021, has a 1-meter IMAX screen. The center console of Ford EVOS that is planned to be launched in October 2021 will feature a 27-inch 4K display. Cadillac Lyriq to be launched in 2022 will have a 33-inch all-in-one display.

In addition, the screen layout has become more novel and unique. In early 2021, Mercedes-Benz revealed the MBUX Hyperscreen, whose three displays merge almost seamlessly into one another to create an impressive screen band over 141 centimeters wide: Driver display (screen diagonal: 12.3 inch), central display (17.7 inch) and front passenger display (12.3 inch) appear as one visual unit. Three screens sit under a common bonded irregular curved cover glass. For particularly brilliant display quality OLED technology is used for the central and front passenger displays. The MBUX Hyperscreen embodies a strong sense of technology.

The IM L7, which is planned to be mass-produced in 2022, is equipped with a 39-inch smart scenario screen and a 12.8-inch AMOLED center console screen. The 39-inch screen is composed of two joint screens, which can be raised and lowered separately with multiple display modes and allow the content to be switched without boundaries.

Driven by high-definition mobile phone displays, consumers have more views on the resolution of automotive displays. Low-resolution displays can no longer meet the needs of the current users. Automotive displays tend to feature higher resolution, higher contrast, wider field of view, more optical indicators, and faster response. In the BMW iX scheduled to be launched at the end of 2021, the new iDrive 8 will come with horizontal curved dual screens: a 12.3-inch LCD cluster screen and 14.9-inch IVI screen (the angle is slightly inclined towards the driver). BMW says screens used in the new system will have a pixel density of 206 pixels per inch (PPI).

HMI capabilities develop from functional perception interaction to cognitive and active interaction

The HMI UI interface design for automobiles is changing on the basis of practical functions. With more and more functions, smart cars are getting cleverer, and the underlying data is more and more abundant. In the future, interface interactions will be more concise, 3D intuitive, younger, transparent, digitized, and symbolized, flattened and the like. In June 2020, Banma SmartDrive released the Venus Intelligent System whose UI interface adopts the design concept of A-B parallel worlds. World A takes a "map as a desktop", while World B uses a waterfall layout. Users can intuitively find commonly used functions on the interface, and even set the display interface as what they want.

MBUX Hyperscreen can display the desired personalized functions for users on the main interface of the central screen at an appropriate time, enabling "zero-layer" operation without scrolling or turning pages, bringing relaxed and intimate HMI experience.

Innovation and breakthroughs in UI interface design are inseparable from the development of HMI design tools. In terms of HMI design and development tools, many companies have released the latest products. Lately, HMI design and development tools feature multiple platforms, multiple algorithms, reusable software framework, 3D interface design, etc. In addition, with the creation of the third space of the smart cockpit and the continuous improvement of entertainment, technology HMI design companies such as web game companies like Eptic Games have dabbled in the automotive market.

Through the fusion applications of AI, smart atmosphere lights, smart surface materials, fragrance systems, smart seats and other products and technologies, voice, AI assistants, face recognition, gestures, face, fingerprint, vital signs detection and other HMI technologies and models have been available in cars. The smart cockpit has certain HMI experience and scenario-based capabilities, and the cockpit scenario interaction is more intelligent, emotional, and humane. HiPhi X, which was mass-produced and delivered in 2021, can recognize the driver's expression, voice, heart rate, blood oxygen, blood pressure, breathing rate, etc. through 52 biosensors, and then adjust music and temperature, or take over the vehicle in dangerous situations.

At CES 2021, Samsung exhibited a digital cockpit equipped with Automotive Samsung Health, which analyzes passengers' health status before boarding by utilizing a combination of cameras and wearable and mobile devices installed in the vehicle. In the car, it also regularly monitors passengers' stress levels and will adjust the vehicle's lighting, scent, or music in an effort to help them relax.

With the HMI design concept focusing on "user experience", HMI is developing from basic functional perception interaction to cognitive and active interaction through AI, in-car and out-of-car perception technologies.

Smart cockpits realize custom programming through SOA software

Since smart cockpits are designed as per human-oriented user experience, personalization will become a major development trend of smart cockpits in the future. In addition to the basic personalized custom settings such as the initial IVI system and buttons, the software architecture can help realize the personalized custom settings of multiple scenarios in the car. For example, the WM W6, which was launched at the Shanghai Auto Show in 2021, WM W6 realizes personalized combinations and settings of scenarios based on SOA software and through APP custom programming.

Table of Contents

1 Ideas and Trends of Automotive Smart Cockpit Design

  • 1.1 Status Quo of Smart Cockpit Design Layout
    • 1.1.1 Overview of Automotive Smart Cockpits
    • 1.1.2 Development Characteristics of Automotive Smart Cockpits
    • 1.1.3 Development Trends of Automotive Cockpits
    • 1.1.4 Cockpit Configuration of Main Newly Released Models in 2021: Concept Models
    • 1.1.5 Cockpit Configuration of Main Newly Released Models in 2020: Concept Models
    • 1.1.6 Cockpit Configuration of Concept Models (1)
    • 1.1.7 Cockpit Configuration of Concept Models (2)
    • 1.1.8 Cockpit Configuration of Concept Models (3)
    • 1.1.9 Cockpit Configuration of Production Models (1)
    • 1.1.10 Cockpit Configuration of Production Models (2)
    • 1.1.11 Cockpit Configuration of Production Models (3)
    • 1.1.12 Cockpit Configuration of Production Models (4)
    • 1.1.13 Cockpit Configuration of Production Models (5)
    • 1.1.14 Cockpit Configuration of Production Models (6)
    • 1.1.15 Cockpit Configuration of Production Models (7)
    • 1.1.16 Cockpit Configuration of Production Models (8)
    • 1.1.17 Cockpit Configuration of Production Models (9)
    • 1.1.18 Cockpit Configuration of Production Models (10)
    • 1.1.19 Cockpit Configuration of Production Models (11)
    • 1.1.20 Cockpit Configuration of Production Models (12)
  • 1.2 Development Trends of Automotive Smart Cockpit Design
    • 1.2.1 Smart Cockpit Design Trends (1)
    • 1.2.2 Smart Cockpit Design Trends (2)
    • 1.2.3 Smart Cockpit Design Trends (3)
    • 1.2.4 Smart Cockpit Design Trends (4)
    • 1.2.5 Smart Cockpit Design Trends (5)
    • 1.2.6 Smart Cockpit Design Trends (6)
    • 1.2.7 Smart Cockpit Design Trends under Autonomous Driving Levels

2 Automotive Smart Cockpit Display Design Trends

  • 2.1 Status Quo of Cockpit Display Design
    • 2.1.1 Cockpit Display Layout
    • 2.1.2 Status Quo of Cockpit Display Design
    • 2.1.3 Cockpit Display Business Layout of Major Companies
    • 2.1.4 Development Direction of Cockpit cluster Display
    • 2.1.5 Cluster Display Business Layout of Major Companies
    • 2.1.6 Status Quo of Cockpit HUD
    • 2.1.7 AR-HUD Business Layout of Major Companies
    • 2.1.8 AID - Holographic Aerial Intelligent Display System
  • 2.2 Cockpit Display Design Trends
    • 2.2.1 Cockpit Display Design Trends (1)
    • 2.2.2 Cockpit Display Design Trends (2)
    • 2.2.3 Cockpit Display Design Trends (3)
    • 2.2.4 Cockpit Display Design Trends (4)
    • 2.2.5 Cockpit Display Design Trends (5)
    • 2.2.6 Cockpit Display Design Trends (6)
    • 2.2.7 Cockpit Display Design Trends (7)
    • 2.2.8 Cockpit Display Design Trends (8)
    • 2.2.9 Cockpit Display Design Trends (9)
    • 2.2.10 Cockpit Display Design Trends (10)
    • 2.2.11 Cockpit Display Design Trends (11)
    • 2.2.12 Cockpit Display Design Trends (12)
    • 2.2.13 Cockpit Display Design Trends (13)
    • 2.2.14 Cockpit Display Design Trends (14)
    • 2.2.15 Cockpit Display Design Trends (15)
    • 2.2.16 Cockpit Display Design Trends (16)

3 Automotive Smart Cockpit HMI Design Trends

  • 3.1 Status Quo of Automotive Cockpit HMI Design
    • 3.1.1 Overview of Automotive HMI
    • 3.1.2 Development History of Automotive HMI modes
    • 3.1.3 Main HMI Modes of domestic and foreign OEMs
    • 3.1.4 Design Modes of Automotive HMI
    • 3.1.5 Design Process of Automotive HMI
    • 3.1.6 Development Process of Automotive HMI
    • 3.1.7 Design Framework of Automotive HMI
    • 3.1.8 Design Principles of Automotive UX
    • 3.1.9 Tools Required for Automotive HMI Design
    • 3.1.10 HMI Design Integrated Software Tools of Major Companies
    • 3.1.11 HMI Design Suppliers of Main OEMs
    • 3.1.12 HMI Suppliers of Main Models
    • 3.1.13 IVI UI interface features of Main OEMs (1)
    • 3.1.14 IVI UI interface features of Main OEMs (2)
    • 3.1.15 UI Cases (1)
    • 3.1.16 UI Cases (2)
    • 3.1.17 UI Cases (3)
  • 3.2 Cockpit HMI Design Trends
    • 3.2.1 HMI Trends (1)
    • 3.2.2 HMI Trends (2)
    • 3.2.3 HMI Trends (3)
    • 3.2.4 HMI Trends (4)
    • 3.2.5 HMI Trends (5)
    • 3.2.6 Automotive UI Design Trends
    • 3.2.7 Development Trends of Cockpit HMI Tools
    • 3.2.8 Cases (1)
    • 3.2.9 Cases (2)
    • 3.2.10 Cases (3)
  • 3.3 Cockpit HMI Design of Main Suppliers
    • 3.3.1 ThunderSoft
      • 3.3.1.1 Development of KANZI
      • 3.3.1.2 Introduction to KANZI HMI
      • 3.3.1.3 KANZI HMI Products
      • 3.3.1.4 Architecture of KANZI HMI
      • 3.3.1.5 Design Process to KANZI HMI
      • 3.3.1.6 Platforms Supported by KANZI
      • 3.3.1.7 KANZI® HYBRID
      • 3.3.1.8 KANZI's Latest News
    • 3.3.2 CANDERA
      • 3.3.2.1 CGI: HMI Interface Design based on CGI Studio
      • 3.3.2.2 CGI Studio: 3.10
      • 3.3.2.3 Main Software, Hardware and Ecosystem Supported by CGI
      • 3.3.2.4 Cases (1)
      • 3.3.2.5 Cases (2)
      • 3.3.2.6 Dynamic
    • 3.3.3 Altia
      • 3.3.3.1 Altia - Model-based HMI Design and Development Software (1)
      • 3.3.3.2 Altia - Model-based HMI Design and Development Software (2)
      • 3.3.3.3 Altia-3D Design
    • 3.3.4 Qt Design
      • 3.3.4.1 Qt Products
      • 3.3.4.2 QtAutomotive Suite: Qt Automotive Suite
      • 3.3.4.3 Components and Tools of Qt Automotive Suite
      • 3.3.4.4 Components of Qt Automotive Suite (1)
      • 3.3.4.5 Components of Qt Automotive Suite (2)
      • 3.3.4.6 Functional Safety Qt Architecture
      • 3.3.4.7 Qt Design Tools (1)
      • 3.3.4.8 Qt Design Tools (2)
      • 3.3.4.9 Qt Development Tools
      • 3.3.4.10 Qt for MCU
      • 3.3.4.11 Qt Quick 3D
      • 3.3.4.12 Qt for Android Automotive
      • 3.3.4.13 Qt Digital Cockpit Solutions (1)
      • 3.3.4.14 Qt Digital Cockpit Solutions (2)
      • 3.3.4.15 Main Automotive Customers of Qt
    • 3.3.5 Elektrobit (EB)
      • 3.3.5.1 EB GUIDE
      • 3.3.5.2 EB GUIDE Frame
      • 3.3.5.3 EB GUIDE arware
      • 3.3.5.4 Cases (1)
      • 3.3.5.5 Cases (2)
      • 3.3.5.6 Cases (3)
    • 3.3.6 Neusoft HMI Design
      • 3.3.6.1 HMI Design Solution
      • 3.3.6.2 Smart Connected Ecological Platform Based on AI and Voice Interaction
      • 3.3.6.3 Full LCD Cluster Design Solution
    • 3.3.7 Valeo
      • 3.3.7.1 HMI Business (1)
      • 3.3.7.2 HMI Business (2)
      • 3.3.7.3 HMI Business (3)
    • 3.3.8 Visteon HMI
      • 3.3.8.1 HMI Business (1)
      • 3.3.8.2 HMI Business (2)
    • 3.3.9 Bosch HMI
      • 3.3.9.1 HMI Products: HMI Solution
      • 3.3.9.2 HMI Products: Business Mode (1)
      • 3.3.9.3 HMI Products: Business Mode (2)
    • 3.3.10 Faurecia HMI
      • 3.3.10.1 HMI Business (1)
      • 3.3.10.2 HMI Business (2)
      • 3.3.10.3 HMI Business (3)
      • 3.3.10.4 HMI Business (4)
      • 3.3.10.5 Zhi*Zhen Cockpit

4 Automotive Smart Surface Application Design Trends

  • 4.1 Overview of Smart Surface Technology
    • 4.1.1 Overview of Smart Surface
    • 4.1.2 Features of Smart Surface Products
    • 4.1.3 Composition of Smart Surface
    • 4.1.4 Smart Surface Technology: Decorative Film Forming Process
    • 4.1.5 Smart Surface Products of Main Suppliers
    • 4.1.6 Smart Surface Industry Chain
  • 4.2 Design Trends of Smart Surface Technology
    • 4.2.1 Smart Surface Design Trends (1)
    • 4.2.2 Smart Surface Design Trends (2)
    • 4.2.3 Smart Surface Design Trends (3)
    • 4.2.4 Smart Surface Design Trends (4)
    • 4.2.5 Smart Surface Design Trends (5)
  • 4.3 Smart Surface Application Cases
    • 4.3.1 Cases (1)
    • 4.3.2 Cases (2)
    • 4.3.3 Cases (3)
    • 4.3.4 Cases (4)
    • 4.3.5 Cases (5)
  • 4.4 Main Solution Suppliers of Smart Surface Technology
    • 4.4.1 Covestro
      • 4.4.1.1 Smart Surface Solution
      • 4.4.1.2 Cases (1)
      • 4.4.1.3 Cases (2)
    • 4.4.2 Canatu
      • 4.4.2.1 Profile
      • 4.4.2.2 Smart Surface Solution
      • 4.4.2.3 CANATU 3D Touch with Translucent Fabric
      • 4.4.2.4 CANATU 3D Touch Transparent Control Switch
      • 4.4.2.5 3D Touch Sensor
      • 4.4.2.6 Origo Concept Steering Wheel
      • 4.4.2.7 Cases (1)
      • 4.4.2.8 Cases (2)
    • 4.4.3 TactoTek
      • 4.4.3.1 Smart Surface Products
      • 4.4.3.2 Smart Surface Technology
      • 4.4.3.3 Main Partners and Customers in the Automotive Field
    • 4.4.4 Yanfeng Automotive Interiors
      • 4.4.4.1 Smart Surface Technology (1)
      • 4.4.4.2 Smart Surface Technology (2)
      • 4.4.4.3 Smart Surface Technology (3)
      • 4.4.4.4 Smart Surface Application of XiM21 Smart Cockpit
    • 4.4.5 Continental
      • 4.4.5.1 Smart Surface
      • 4.4.5.2 Smart Surface Materials
      • 4.4.5.3 R & D Direction of Smart Surface Materials
      • 4.4.5.4 Cooperation with CU-BX in Automotive Non-contact Occupant Health and Safety Detection System

5 Application and Design Trends of Ambient Lights in Smart Cockpits

  • 5.1 Development Overview of Interior Ambient Lights
    • 5.1.1 Overview of Automotive Ambient Lights
    • 5.1.2 Classification of Automotive Ambient Lights
    • 5.1.3 Composition of Automotive Ambient Lights
    • 5.1.4 Application Scope of Automotive Ambient Lights
    • 5.1.5 Control Technology of Interior Ambient Lights
    • 5.1.6 Main Body Network Architecture of Interior Ambient Lights (1)
    • 5.1.7 Main Body Network Architecture of Interior Ambient Lights (2)
    • 5.1.8 Main Body Network Architecture of Interior Ambient Lights (3)
    • 5.1.9 Design Process of Interior Lighting
    • 5.1.10 Ambient Light Configuration of Main OEM Models
    • 5.1.11 Development and Evolution of Interior Ambient Lights (1)
    • 5.1.12 Development and Evolution of Interior Ambient Lights (2)
    • 5.1.13 Global Market Scale of Interior Ambient Lights
    • 5.1.14 Global Distribution of Interior Ambient Lights
    • 5.1.15 Global Distribution and Optics Technology of Interior Ambient Lights
    • 5.1.16 Industry Chain of Interior Ambient Lights
  • 5.2 Development Trends of Interior Ambient Lights
    • 5.2.1 Development Trends of Interior Ambient Lights (1)
    • 5.2.2 Development Trends of Interior Ambient Lights (2)
    • 5.2.3 Development Trends of Interior Ambient Lights (3)
    • 5.2.4 Development Trends of Interior Ambient Lights (4)
    • 5.2.5 Development Trends of Interior Ambient Lights (5)
  • 5.3 Interactive Cases of Interior Ambient Lights
    • 5.3.1 Cases (1)
    • 5.3.2 Cases (2)
    • 5.3.3 Cases (3)
    • 5.3.4 Cases (4)

6 Application Trends of Automotive Smart Haptic Feedback Technology

  • 6.1 Overview of Automotive Touch Feedback Development
    • 6.1.1 Overview of Touch Feedback Technology
    • 6.1.2 Demand for Touch Feedback Technology
    • 6.1.3 Touch Feedback Technology Mode (1)
    • 6.1.4 Touch Feedback Technology Mode (2)
    • 6.1.5 Touch Feedback Technology Mode (3)
    • 6.1.6 Industry Chain of Main Touch Feedback Technology
    • 6.1.7 Main Suppliers of Touch Feedback Technology and Products
    • 6.1.8 Main Tier1 Suppliers of Touch Feedback Technology and Products
    • 6.1.9 Touch Feedback Technology Application of OEMs
    • 6.1.10 Automotive Display Touch System Technology Roadmap
    • 6.1.11 Cases (1)
    • 6.1.12 Cases (2)
    • 6.1.13 Cases (3)
  • 6.2 Main Automotive Haptic Feedback Suppliers
    • 6.2.1 Tanvas
      • 6.2.1.1 Multifunctional Surface Haptics Technology
      • 6.2.1.2 Automotive Solutions
    • 6.2.2 Boreas
      • 6.2.2.1 Piezo-Capdrive Technology
      • 6.2.2.2 BOS1211
    • 6.2.3 TDK PowerHap™ Piezo Actuator with Haptic Feedback
      • 6.2.3.1 PowerHap™ Piezo Actuator (Square Type) with Haptic Feedback
      • 6.2.3.2 PowerHap™ Products
      • 6.2.3.3 PowerHap™ Product Planning
    • 6.2.4 Continental
  • 6.2.4.1Haptic Feedback Technology
      • 6.2.4.2 Tactile Interactive Display
      • 6.2.4.3 HMI Business
    • 6.2.5 Others
      • 6.2.5.1 Haptic Feedback Technology of Bosch
      • 6.2.5.2 Haptic Feedback Technology of Joyson Electronics

7 Other Emerging Cockpit Interaction Technology

  • 7.1 Diversified and Interactive Steering Wheel Design
  • 7.2 Maximization of Space Utilization
  • 7.3 Automotive Sound Effects
  • 7.4 Smart Healthy Cockpit Layout