表纸
市场调查报告书
商品编码
923634

网路业者的AI策略:主要的利用案例 & 收益化模式 (2020-2024年)

AI Strategies for Network Operators: Key Use Cases & Monetisation Models 2020-2024

出版日期: | 出版商: Juniper Research Ltd | 英文 | 商品交期: 最快1-2个工作天内

价格
  • 全貌
  • 简介
  • 目录
简介

本报告提供服务供应商的领域的新的、现有的AI利用案例的相关调查,全球主要八个区域的网路业者的主要收益化模式、策略等分析,5G等新技术带给业者AI引进策略的影响,AI实现的业者的商机,业者的AI解决方案的支出额,网路业者的AI解决方案的投资额最为成长的地区等考察。

第1章 要点 & 策略建议

第2章 网路业者的AI策略:未来市场展望

  • 简介
    • AI (人工智能)的定义
    • 收益减少的课题
    • OTT的竞争
    • AI投资形势
    • 用户数的增加 & 高密度化的课题
    • 网路 & 技术

第3章 网路业者的AI策略:利用案例分析

  • 网路业者领域的AI所扮演的角色
    • AI引进的现状:各业者
  • 对网路业者来说的AI的利用案例
    • 简介
    • 诈欺检测 & 减轻
    • 预知保全
    • 网路最佳化 & 虚拟化
    • 客户支援技术
    • 销售 & 行销效能
    • 工作人力生产率的学习 & 开发
  • AI引进的限制
    • 价格相关障碍
    • 企业文化相关课题
    • 法规的课题

第4章 网路业者的AI策略:市场预测 & 要点

  • 简介
    • 简介 & 调查手法
    • 加入活用AI的行动网路的用户
    • 网路业者的AI营运支出总额
    • 每一手机用户的业者的AI平均支出额
目录

Overview

Juniper Research's latest ‘AI Strategies for Network Operators ’ report evaluates new and existing AI use cases for the service provider space. It assesses key monetisation models and strategies for network operators across 8 global regions.

This must-read research provides comprehensive quantitative and qualitative analysis into the key drivers behind operator-lead AI adoption globally, and presents 4-year forecasts for operator average and total spend on AI solutions by 2024.

This research suite includes:

  • Market Trends & Opportunities (PDF)
  • 4-Year Deep Dive Data and Forecasting (PDF & Excel)

Key Features

  • Network Operator Landscape: Evaluation of the state of the network operator industry globally, identifying key challenges, business models and key opportunities for technologies, including:
    • 5G & Edge Computing
    • Serverless Infrastructure
    • AIaaS (AI as a Service)
    • Omnichannel Communication & Chatbots
  • AI for Network Operators Use Case Analysis: Evaluating how network operators will leverage AI solutions in the future, with comprehensive focus on 6 key use cases that will drive revenue gains and cost efficiencies, including:
    • Fraud Detection & Mitigation
    • Predictive Maintenance
    • Network Optimisation & Virtualisation
    • Customer-facing Technologies
    • Sales & Marketing Performance
    • Learning & Development and Workforce Productivity
  • Interviews: 3 case studies of market-leading AI analytics vendors; assessing how the largest network operators today leverage AI for network optimisation, sales performance, customer experience improvement and other revenue-boosting use cases. These include:
    • Hitachi Vantara
    • Avora
    • Groundhog Technologies
  • Benchmark Industry Forecasts: Provided for global operator spend on AI solutions across 8 key regions, and aligned with a detailed analysis of future development.

Key Questions

  • 1. How will emerging technologies, such as 5G, affect operators' strategies for AI adoption?
  • 2. What is the AI-enabled revenue opportunity for operators over the next 4 years?
  • 3. What will the value be of operators' spend on AI solutions by 2024?
  • 4. How are leading AI vendors globally serving network operators?
  • 5. Which geographic regions are expected to have highest growth rate for network operator investment in AI solutions by 2024?
  • 6. What will the most prevalent AI-driven monetisation use cases for operators be in emerging and developed markets in 4 years' time?

Companies Referenced

  • Interviewed: Avora, Groundhog Technologies, Hitachi Vantara, Infobip, Interop Technologies.
  • Case Studied: Avora, Groundhog Technologies, Hitachi Vantara.
  • Mentioned: Amazon, Apple, BEREC (The Body of European Regulators for Electronic Communications, Bharti Airtel, BSNL, China Mobile, Chunghwa Telecom, Deloitte, Deutsche Telekom, Ericsson, Etisalat, EY, Facebook, FCC (Federal Communications Commission), Google, Haptik, Huawei, Hulu, Indosat, Line, Microsoft, MIT (the Massachusetts Institute of Technology), Netflix, NTT Docomo, O2, Ooredoo, Optus, Orange, Rakuten, Reliance Jio, Robi, Salt Mobile, SingTel, Skype, Sprint, STC, Telefonica, Telkomsel, T-Mobile, Viettel, Vocord, Vodafone, WeChat, WhatsApp, YouTube.

Data & Interactive Forecast

Juniper Research's ‘AI Strategies for Network Operators ’ forecast suite includes:

  • 4-year benchmark forecasts for key metrics by 8 key regions:
    • North America
    • Latin America
    • West Europe
    • Central & East Europe
    • Far East & China
    • Indian Subcontinent
    • Rest of Asia Pacific
    • Africa & Middle East
  • Country-level splits including:
    • Canada
    • Germany
    • UK
    • US
  • Forecasts for network operators spend on AI services including:
    • Average Network Operator Spend on AI per Mobile Subscriber per Annum ($)
    • Total Network Operator Spend on AI per Annum ($m)
  • Access to the full set of forecast data of 6 tables and over 540 datapoints.
  • Interactive Excel Scenario tool allowing users the ability to manipulate Juniper Research's data for 5 different metrics.

Juniper Research's highly granular interactive Excels enable clients to manipulate Juniper Research's forecast data and charts to test their own assumptions using the Interactive Scenario Tool and compare select markets side by side in customised charts and tables. IFxls greatly increase clients' ability to both understand a particular market and to integrate their own views into the model.

Table of Contents

1. Key Takeaways & Strategic Recommendations

  • 1.1. Key Takeaways
  • 1.2. Strategic Recommendations
  • 1.3. Research Aims & Objectives

2. AI Strategies for Network Operators: Future Market Outlook

  • 2.1. Introduction
    • 2.1.1. Definition of AI (Artificial Intelligence)
    • 2.1.2. The Declining Revenues Challenge
    • 2.1.3. OTT Competition
      • Figure 2.2: Enablers of OTT Players' Business Models
      • Figure 2.3: Total Number of OTT Users vs Mobile Subscribers (m), 2016 & 2019
    • 2.1.4. The AI Investment Landscape
      • i. Global AI Investment Landscape
    • 2.2.3. Increasing Number of Subscribers & Densification Issues
      • i. High Levels of Handset Penetration & Evolving Data Usage
      • ii. Network Operator's Investment in AI
        • Table 2.4: Mobile Penetration as a Proportion of Global Population (%), Split by 8 Key Regions, 2019-2024
        • Table 2.5: Total Data Traffic Generated by Mobile Handsets per Annum (PB) Split by Data Categories, 2019-2024
        • Table 2.6: Total Data Traffic Carried Via Cellular Networks Per Annum (PB) Split by Originating Device Type, 2019-2024
      • ii. Juniper's View
    • 2.2.4. Networks & Technology
      • i. The Rise of 5G

3. AI Strategies for Network Operators: Use Case Analysis

  • Figure 2.7: Global Mobile 5G Active Connections (m) Split by 8 Key Regions 2020 & 2025
  • Figure 2.8: The Evolution of Wireless Networks
  • Figure 2.9: Shift to Centralised & Decentralised Computing, 1970-2030
  • 3.1. AI's Role in the Network Operator Field
    • 3.1.1. Current State of AI Adoption by Operators
      • i. Innovations in Customer Service
  • 3.2. AI Use Cases for Network Operators
    • 3.2.1. Introduction
    • 3.2.2. Fraud Detection & Mitigation
      • Case Study: Hitachi Vantara
      • i. Hitachi Vantara's Analytics Solution
    • 3.2.3. Predictive Maintenance
    • 3.2.4. Network Optimisation & Virtualisation
      • Case Study: Groundhog Technologies
      • i. Groundhog's Solutions
        • Case Study: Avora
      • i. Avora's Solutions
      • ii.Operator Case Studies
    • 3.2.5. Customer-facing Technologies
    • 3.2.6. Sales & Marketing Performance
    • 3.2.7. Learning & Development for Workforce Productivity
  • 3.3. AI Adoption Limitations
    • 3.3.1. Price-related Barriers
      • Figure 3.2: Total Network Operator Spend on AI CAGR ($m) Split by 8 Key Regions 2019-2024
    • 3.3.2. Challenges Related to Organisational Culture
    • 3.3.3. Regulatory Challenges

4. AI Strategies for Network Operators: Market Forecasts & Key Takeaways

  • 4.1. Introduction
    • 4.1.1. Introduction & Methodology
      • Figure 4.1: Methodology for AI Operator Spend Forecasts
    • 4.1.2. Users that Subscribe for Mobile Networks that Leverage AI
      • Figure & Table 4.2: Total Number of Subscribers that Subscribe to Operator Networks Leveraging AI (m) Split by 8 Key Regions, 2019-2024
    • 4.1.3. Total Network Operator Spend on AI Solutions
      • Figure & Table 4.3: Total Network Operator Spend on AI per Annum ($m) Split by 8 Key Regions, 2019-2024
    • 4.1.4. Average Operator AI spend per Mobile Subscriber
      • Figure & Table 4.4: Average Network Operator Spend on AI per Mobile Subscriber per Annum ($) Split by 8 Key Regions, 2019-2024