NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

绿色氢气生产:2021-2031年电解槽市场

Green Hydrogen Production: Electrolyzer Markets 2021-2031

出版商 IDTechEx Ltd. 商品编码 997383
出版日期 内容资讯 英文 166 Slides
商品交期: 最快1-2个工作天内
价格
绿色氢气生产:2021-2031年电解槽市场 Green Hydrogen Production: Electrolyzer Markets 2021-2031
出版日期: 2021年03月31日内容资讯: 英文 166 Slides
简介

标题
绿色氢生产:2021-2031年电解器市场
鹼性(AWE),PEM(PEMEL)和固体氧化物(SOEL)电解系统的技术经济分析,以及主要的市场参与者和未来的绿色氢气生产趋势。

氢经济的发展似乎已经开始。随著2019年和2020年氢系统安装量的增加,氢经济从其发展的最重要技术开始:电解器系统的采用。

从宣布对氢领域投资数十亿美元,以及越来越多地采用国家氢计划,尤其是在欧洲,IDTechEx认为氢,尤其是电解器市场是快速增长的情况。

从氢技术的必要性开始,IDTechEx在 "绿色氢产品:2021-2031年电解器市场" 报告中开始分析所谓的氢经济性的实际必要性,并与电池解决方案进行了比较。在对欧洲EU-ETS碳定价方法进行了解释之后,显示了其有效性以及与其他现有碳税的比较。尽管必须由不同行业来实现对CO2排放的限制,但要实现此目标,必须进行绿色技术的采用/集成。

为瞭解电解器市场将如何发展,在报告中对氢的主要最终用户进行了调查,并根据分析的趋势进行了分析。

然后提供了对不同电解槽系统的深入瞭解,其中提供了三个主要电解槽系统之间的区别,包括工作机理,所用材料,系统性能以及-IDTechEx的一个关键参数-不同的降解过程发生。

采用的材料使读者能够瞭解哪些可能的OEM以及最终的技术改进是可能的。结合ID TechEx进行的公司简介,可以全面瞭解电解槽市场。另一方面,在每个电解槽的不同组件中发生的不同降解过程,向读者展示了电解槽系统的技术局限性以及未来的应用。

在目前的发展状态下,市场上有3种电解槽:鹼性水电解槽(AWE),质子交换膜电解槽(PEMEL)和固体氧化物电解槽(SOEL),尽管前两种电解槽已被积极地商品化。所有这三个设备都使用电将水分子分解为H2和O2,并且这三种技术之间的差异由两个电极之间交换的离子(分别为AW E,PEMEL和SOEL的OH-,H +和O =给出)给出。其中涉及采用不同的电解质和材料。不同的机理和材料直接影响三个电解槽中每个电解槽的性能和性能。

AWE系统较旧,在工业规模上使用最多,最早的安装时间是1920年代。PEMEL装置来自PEM燃料电池的改进。PEMEL系统的首次安装记录于2000年代。

最新,最年轻的技术,即SOEL系统正在进入市场。除了设备进行不同的离子交换外,该系统还比PEM或AEL设备(均介于50到90摄氏度之间)在更高的温度(600-850摄氏度)下运行。该系统的较高工作水平,尽管需要耐久的材料和昂贵的制造工艺,但阻止了昂贵催化剂的利用,促进了水分子的分解,但也允许采用其他燃料,例如CO2和水蒸气,从而获得了另一种燃料。重要的工业气体原料:合成气(CO + H2)。

目前,电解器市场分为两种较旧的技术:鹼性和质子交换膜。SOEL技术的早期阶段正在慢慢推向市场。

在报告的最后部分,已经对商品化系统进行了效率计算,向读者展示了PEMEL和AWE系统的比较。通过进行的分析,IDTechEx概述了采用主要电解槽类型的未来趋势。

总而言之,鉴于IDTechEx为瞭解电解槽市场的当前发展而进行了详细的调查,因此提供了有关最大的电解槽制造商的最新动态。这些案例研究清楚地说明了电解质制造商如何进入市场。

该报告提供的技术经济调查结果是对兆瓦装机中电解槽系统数量的市场预测,以及对市场价值的估计。

来自IDTechEx的分析师访问权限

所有报告购买都包括长达30分钟的通话时间,该电话与一位专家分析师联系,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。需要在购买报告后的三个月内使用。

目录

1。行政SUMMA RY

  • 1.1。新的氢炒作需要经济支持
  • 1.2。主要氢用户和未来采用者
  • 1.3。电解系□□统概述
  • 1.4。电解系□□统比较-工作参数
  • 1.5。PEMEL-AWE效率趋势
  • 1.6。AWE和PEMEL系统的优点和缺点
  • 1.7。SOEL系统:替代AWE?
  • 1.8。电解槽市场概况
  • 1.9。全球氢气公司
  • 1.10。全球电解槽生产商
  • 1.11。下游电解组件供应商
  • 1.12。2021-2031年电解槽市场预测
  • 1.13。预测假设
  • 1.14。电解槽市场的未来趋势

2。简介

  • 2.1.1。介绍的氢和电解SY茎
  • 2.2。氢经济
    • 2.2.1。什么是氢经济?
    • 2.2.2。氢经济:概述
    • 2.2.3。我们找到了鸡和鸡蛋吗?
    • 2.2.4。绿色H2的生产将如何增加RES的分配
    • 2.2.5。氢经济发展问题
    • 2.2.6。为什么不采用 "电池经济" ?
    • 2.2.7。BEV和FCEV呢?
    • 2.2.8。BEV和FCEV效率比较
    • 2.2.9。当我们看到氢经济时
  • 2.3。碳定价
    • 2.3.1。氢经济将从何处开始?
    • 2.3.2。碳定价
    • 2.3.3。全球碳定价
    • 2.3.4。碳定价面临的挑战
    • 2.3.5。欧盟的碳定价
    • 2.3 .6。欧盟排放交易体系是否有影响?
    • 2.3.7。二氧化碳成本对钢铁行业的影响
    • 2.3.8。二氧化碳排放量比较
    • 2.4。氢气最终用户
      • 2.4.1。氢气最终用户分析
      • 2.4.2。IDTechEx氢消耗量预测:氨
      • 2.4.3。IDTechEx氢气消耗量预测:炼油厂
      • 2.4.4。IDTechEx氢气消耗量预测:甲醇
      • 2.4.5。IDTechEx氢气消耗量预测:钢铁
      • 2.4.6。钢铁生产中的氢气采用:概述
      • 2.4.7。钢铁生产工艺
      • 2.4.8。炼钢行业的绿色氢
      • 2.4.9。二氧化碳排放量比较
      • 2.4.10。绿钢项目:
      • 2.4.11。氢气生产氨
      • 2.4.12。氨: "氢的阴暗面"
      • 2.4.13。氢气在炼油工艺中的应用
      • 2.4.14。气体混合
      • 2.4.15。氢气应用

    3。电解技术

    • 3.1.1。电解槽介绍
    • 3.1.2。AWE和PEMEL系统的PROS和COONS
    • 3.1.3。SOEL系统:替代AWE?
    • 3.1.4。氢的颜色
    • 3.1.5。制氢方法
    • 3.1.6。制氢方法:蒸汽重整(SMR)
    • 3.1.7。制氢方法:部分氧化(POX)
    • 3.1.8。制氢方法:自热重整(ATR)
    • 3.2。鹼性电解水机(AWE)
      • 3.2.1。鹼性电解槽:概述
      • 3.2.2。AWE电解系统:材料,特性
      • 3.2.3。鹼性电解槽:阴极反应
      • 3.2.4。鹼性电解槽:阴极材料(HER)
      • 3.2.5。鹼性电解槽:阳极反应(OER)
      • 3.2.6。AWE阳极-阴极摘要
      • 3.2.7。鹼性和阴离子交换膜电解槽
      • 3.2.8。AWE系统- "零间隙" 配置优势
      • 3.2.9。AWE膜片特性
      • 3.2.10。AWE:垫片和电解质
      • 3.2.11。AWE:膜电极组件(MEA)
      • 3.2.12。AEMWE概述
      • 3.2 .13。商业AEM电解质和电池性能
      • 3.2.14。大型AWE系统
      • 3.2.15。AEL供应链
      • 3.2.16。质子交换膜电解器(PEMEL)
      • 3.2.17。概述
      • 3.2.18。PEM电解槽系统:材料,规格ifics
      • 3.2.19。质子交换膜电解槽
      • 3.2.20。三相边界和质子交换膜
      • 3.2.21。PEMEL工作机制
      • 3.2.22。PEMEL堆栈和组件
      • 3.2.23。电解系□□统:防喷器和烟囱
      • 3.2.24 。OER电催化剂
      • 3.2.25。HER电催化剂
      • 3.2.26。电催化剂降解方面
      • 3.2.27。PEMEL膜:概述
      • 3.2.28。膜降解问题
      • 3.2.29。膜降解过程
      • 3.2.30。当前的收集者(CC)
      • 3.2.31。双极板(BPs)
      • 3.2.32。双极板材料
      • 3.2.33。钛BP的缺点
      • 3.2.34。PEMEL技术概述
      • 3.2.35。PEMEL成本明细
      • 3.2.36。PEMEL供应链
      • 3.3。固体氧化物电解槽(SOEL)
      • 3.3.1。固体氧化物电解槽(SOEL)
      • 3.3.2。概述
      • 3.3.3。固体氧化物电解槽:概述
      • 3.3.4。可逆-SOFC
      • 3.3.5。固体氧化物电解器:固体电解质
      • 3.3.6。固体氧化物电解器:电极
      • 3.3.7。SOEL电解系统:材料,规格
      • 3.3.8。SOEL市场
      • 3.3.9。SOEL供应链

    4。电解市场分析

    • 4.1。电解槽制造商:概述
    • 4.2。市场Overvi EW
    • 4.3。动态运行特性
    • 4.4。欧洲引领著氢气市场
    • 4.5。欧洲的氢气项目
    • 4.6。氢相关项目
    • 4.7。电解槽系统比较-材料
    • 4.8。电解器系统比较-操作参数
    • 4.9。下游电解器组件供应商
    • 4.10。全球电解槽生产商
    • 4.11。EL制造商的市场定位
    • 4.12。IDTechEx采访的公司
    • 4.13。商业化电解效率比较
    • 4.14。电解效率图
    • 4.15。PEMEL效率趋势
    • 4.16。PEMEL-AWE效率趋势

    5。案例研究

    • 5.1。Nel ASA
    • 5.2。Nel概述
    • 5.3。Nel 2020分析
    • 5.4。PL UG电源
    • 5.5。插头电源:概述
    • 5.6。PlugPower-收购与合作伙伴关系
    • 5.7。Plug Power开发自己的供应链
    • 5.8。ITM电源
    • 5.9。ITM Power: "变革性的2020"
    • 5.10。英国谢菲尔德的1GW PEM电解工厂
    • 5.11。ITM大力参与HRS部署
    • 5.12。ITM Power:天然气发电和燃气电网项目
    • 5.13。工业应用的ITM Power电解槽
    • 5.14。ITM Power-林德合资企业
    • 5.15。ITM电力工程中的TS
    • 5.16。麦比
    • 5.17。McPhy概述
    • 5.18。从?18m到?198m增资
    • 5.19。McPhy的战略合作伙伴
  • 目录
    Product Code: ISBN 9781913899400

    Title:
    Green Hydrogen Production: Electrolyzer Markets 2021-2031
    Techno-economic analysis of Alkaline (AWE), PEM (PEMEL), and Solid Oxide (SOEL) electrolyzer systems, with major market players and future green hydrogen production trends.

    The development of the hydrogen economy seems to have started. With increasing installations of hydrogen systems in 2019 and 2020, the hydrogen economy began with the most essential technology for its development: the adoption of electrolyzer systems.

    From the announcement of multi billion investment in the hydrogen sector, and the growing adoption of national hydrogen plans, particularly in Europe, IDTechEx identify hydrogen and particularly the electrolyzers market as a fast-growing scenario.

    Beginning with the necessity of hydrogen technologies, in the 'Green Hydrogen Production: Electrolyzer Markets 2021-2031' report, IDTechEx started to analyse the actual necessity of the so-called hydrogen economy, providing a comparison with battery solutions. Following with an explanation of the European EU-ETS carbon pricing method, its effectiveness and comparison with other existing carbon taxes is shown. Although restrictions to CO2 emissions must be fulfilled by different industries, to achieve this target the adoption/integration of green technologies has to be performed.

    To understand how the electrolyzer market will evolve, in the report the main end-users of hydrogen have been investigated, and following the trends analysed.

    A deep dive into the different electrolyzer systems is then provided, where differences between the three main electrolyzer systems are provided, in terms of working mechanism, employed materials, system performance, and - a key parameter IDTechEx's view - the different degradation processes taking place.

    The adopted materials allow the reader to understand which possible OEMs and eventual technical improvements are possible. Coupled with the company profiles performed by IDTechEx, a complete vision of the electrolyzer market is obtained. On the other end, the different degradation processes taking place in the different components of each electrolyzer, show the reader the technical limits and hence future application of the electrolyzer systems.

    With the current state of development, the market is populated with three electrolyzers: alkaline water electrolyzer (AWE), proton exchange membrane electrolyzer (PEMEL), and solid oxide electrolyzers (SOEL), although only the first two are actively commercialised. All three devices employ electricity to split the water molecules into H2 and O2, and differences among the three technologies are given by the ions exchanged between the two electrodes (OH-, H+, and O= for AWE, PEMEL, and SOEL respectively) which involve the adoption of different electrolytes and materials. Different mechanisms and materials directly impact the performance and properties of each of the three electrolyzers.

    The AWE systems are the older and most adopted at industrial scale, with first installations occurring in the 1920s. PEMEL devices come from the improvement of PEM fuel cells. The first installations of PEMEL systems were recorded in the 2000s.

    The latest and youngest technology, SOEL systems are currently approaching the market. Besides the different ion exchange by the device, this system operates at higher temperature (600-850 Celsius) than PEM or AEL device (both ranging between 50 and 90 Celsius). The higher working operation of this system, although requiring resistant materials and expensive fabrication processes, prevent the utilisation of expensive catalysts, facilitating the decomposition of water molecules, but also allowing the adoption of other fuels, such as CO2 and water vapour, obtaining another important industrial gas feedstock: syngas (CO + H2).

    The electrolyzer market is currently split between the two older technologies: alkaline and proton exchange membrane. The early stage of the SOEL technology is slowly approaching the market.

    In the final part of the report, the efficiency calculation of commercialised systems has been performed, showing the reader a comparison of PEMEL and AWE systems. From the analysis performed, IDTechEx outlined the future trends of adoption of the main electrolyzer types.

    In conclusion, given the detailed investigation IDTechEx performed to understand the current evolution of the electrolyzer market, the latest developments regarding the largest electrolyzer manufacturers are provided. These case studies are clear examples of how the electrolyte manufacturers are approaching the market.

    The outcome of the techno-economic investigation provided by the report is a market forecast regarding the amount of electrolyzer systems in MW installed, together with an estimation of the market value.

    Analyst access from IDTechEx

    All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

    TABLE OF CONTENTS

    1. EXECUTIVE SUMMARY

    • 1.1. The new hydrogen hype needs economic support
    • 1.2. Main hydrogen users and future adopters
    • 1.3. Electrolyzer Systems Overview
    • 1.4. Electrolyzer systems comparison - Operating parameters
    • 1.5. PEMEL-AWE Efficiency trend
    • 1.6. PROS and CONS of AWE and PEMEL systems
    • 1.7. SOEL systems: a substitute for AWE?
    • 1.8. Electrolyzer Market Overview
    • 1.9. Hydrogen companies in the world
    • 1.10. Global electrolyzer players
    • 1.11. Downstream electrolyzer component vendors
    • 1.12. Electrolyzer Market Forecast 2021-2031
    • 1.13. Forecast Assumption
    • 1.14. Future trend of the electrolyzer market

    2. INTRODUCTION

    • 2.1.1. Introduction to hydrogen and electrolyzer systems
    • 2.2. The Hydrogen Economy
      • 2.2.1. What is a Hydrogen Economy?
      • 2.2.2. The Hydrogen Economy: Overview
      • 2.2.3. Have we found the Chicken and the Egg?
      • 2.2.4. How Green H2 production will increase RES installations
      • 2.2.5. Hydrogen Economy Development Issues
      • 2.2.6. Why not a "Battery Economy"?
      • 2.2.7. What about BEV and FCEV?
      • 2.2.8. BEV and FCEV Efficiency Comparison
      • 2.2.9. When we will see the hydrogen economy
    • 2.3. Carbon Pricing
      • 2.3.1. Where will the hydrogen economy begin?
      • 2.3.2. Carbon pricing
      • 2.3.3. Carbon pricing across the world
      • 2.3.4. Challenges with carbon pricing
      • 2.3.5. Carbon pricing in the European Union
      • 2.3.6. Has the EU ETS had an impact?
      • 2.3.7. CO2 cost impact on Steel industry
      • 2.3.8. CO2 emissions comparison
    • 2.4. Hydrogen End Users
      • 2.4.1. Hydrogen End Users Analysis
      • 2.4.2. IDTechEx Hydrogen consumption forecast: Ammonia
      • 2.4.3. IDTechEx Hydrogen consumption forecast: Refinery
      • 2.4.4. IDTechEx Hydrogen consumption forecast: Methanol
      • 2.4.5. IDTechEx Hydrogen consumption forecast: Steel
      • 2.4.6. Hydrogen adoption in steel production: Overview
      • 2.4.7. Steel production processes
      • 2.4.8. Green hydrogen for steel making industry
      • 2.4.9. CO2 emissions comparison
      • 2.4.10. Green Steel Projects:
      • 2.4.11. Hydrogen for ammonia production
      • 2.4.12. Ammonia: 'The dark side of Hydrogen'
      • 2.4.13. Hydrogen application in refinery process
      • 2.4.14. Gas Blending
      • 2.4.15. Hydrogen Applications

    3. ELECTROLYZER TECHNOLOGIES

    • 3.1.1. Electrolyzers Introduction
    • 3.1.2. PROS and CONS of AWE and PEMEL systems
    • 3.1.3. SOEL systems: a substitute to AWE?
    • 3.1.4. The colours of Hydrogen
    • 3.1.5. Hydrogen Production Methods
    • 3.1.6. Hydrogen Production Methods: Steam Reforming (SMR)
    • 3.1.7. Hydrogen Production Methods: Partial Oxidation (POX)
    • 3.1.8. Hydrogen Production Methods: Autothermal Reforming (ATR)
    • 3.2. Alkaline Water Electrolyzer (AWE)
      • 3.2.1. Alkaline Electrolyzer: Overview
      • 3.2.2. AWE electrolyzers systems: Materials, Specifics
      • 3.2.3. Alkaline Electrolyzer: Cathode Reaction
      • 3.2.4. Alkaline Electrolyzer: Cathode Materials (HER)
      • 3.2.5. Alkaline Electrolyzer: Anode Reaction (OER)
      • 3.2.6. AWE Anode-Cathode summary
      • 3.2.7. Alkaline and Anion Exchange Membrane Electrolyzers
      • 3.2.8. AWE system - 'Zero-Gap' configuration advantages
      • 3.2.9. AWE Diaphragm Characteristics
      • 3.2.10. AWE: Spacer and Electrolyte
      • 3.2.11. AWE: Membrane Electrode Assembly (MEA)
      • 3.2.12. AEMWE Overview
      • 3.2.13. Commercial AEM electrolyte and cell performances
      • 3.2.14. Large scale AWE system
      • 3.2.15. AEL Supply chain
      • 3.2.16. Proton Exchange Membrane Electrolyzer (PEMEL)
      • 3.2.17. Overview
      • 3.2.18. PEM electrolyzers systems: Materials, Specifics
      • 3.2.19. Proton Exchange Membrane Electrolyzer
      • 3.2.20. Three Phase Boundary and Proton Exchange Membrane
      • 3.2.21. PEMEL Working Mechanism
      • 3.2.22. PEMEL stack and components
      • 3.2.23. Electrolyzer system: BOP and Stack
      • 3.2.24. OER Electrocatalyst
      • 3.2.25. HER Electrocatalyst
      • 3.2.26. Electrocatalyst Degradation Aspects
      • 3.2.27. PEMEL Membrane: Overview
      • 3.2.28. Membrane degradation problems
      • 3.2.29. Membrane degradation processes
      • 3.2.30. Current Collectors (CCs)
      • 3.2.31. Bipolar Plates (BPs)
      • 3.2.32. Bipolar Plates Materials
      • 3.2.33. Titanium BP drawbacks
      • 3.2.34. PEMEL Technical overview
      • 3.2.35. PEMEL cost breakdown
      • 3.2.36. PEMEL Supply chain
      • 3.3. Solid Oxide Electrolyzer (SOEL)
      • 3.3.1. Solid Oxide Electrolyzer (SOEL)
      • 3.3.2. Overview
      • 3.3.3. Solid Oxide Electrolyzer: Overview
      • 3.3.4. Reversible - SOFC
      • 3.3.5. Solid Oxide Electrolyzer: Solid Electrolyte
      • 3.3.6. Solid Oxide Electrolyzer: Electrodes
      • 3.3.7. SOEL Electrolyzers systems: Materials, Specifics
      • 3.3.8. SOEL Market
      • 3.3.9. SOEL Supply Chain

    4. ELECTROLYZER MARKET ANALYSIS

    • 4.1. Electrolyzer Manufacturers: Overview
    • 4.2. Market Overview
    • 4.3. Dynamic Operation Property
    • 4.4. Europe is leading the hydrogen market
    • 4.5. Hydrogen projects in Europe
    • 4.6. Hydrogen related projects
    • 4.7. Comparison of electrolyzer systems - Materials
    • 4.8. Electrolyzer systems comparison - Operating parameters
    • 4.9. Downstream electrolyzers component vendors
    • 4.10. Global electrolyzer players
    • 4.11. Market Addressed by EL manufacturer
    • 4.12. Companies Interviewed by IDTechEx
    • 4.13. Commercialised electrolyzer efficiency comparison
    • 4.14. Electrolyzers efficiency charts
    • 4.15. PEMEL Efficiency trend
    • 4.16. PEMEL-AWE efficiency trend

    5. CASE STUDIES

    • 5.1. Nel ASA
    • 5.2. Nel Overview
    • 5.3. Nel 2020 analysis
    • 5.4. Plug Power
    • 5.5. Plug Power: Overview
    • 5.6. PlugPower - Acquisitions and Partnerships
    • 5.7. Plug Power developing its own supply chain
    • 5.8. ITM Power
    • 5.9. ITM Power: 'A transformational 2020'
    • 5.10. 1GW PEM electrolyzer factory in Sheffield (UK)
    • 5.11. ITM strong involvement in HRS deployment
    • 5.12. ITM Power: Power-to-Gas and Gas-Grid projects
    • 5.13. ITM Power electrolyzers for industrial applications
    • 5.14. ITM Power - Linde joint venture
    • 5.15. ITM Power Projects
    • 5.16. McPhy
    • 5.17. McPhy Overview
    • 5.18. From €18m to €198m Capital Increase
    • 5.19. McPhy's strategic Partners