NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

2021-2031年可持续替代燃料

Sustainable Alternative Fuels 2021-2031

出版商 IDTechEx Ltd. 商品编码 988579
出版日期 内容资讯 英文 271 Slides
商品交期: 最快1-2个工作天内
价格
2021-2031年可持续替代燃料 Sustainable Alternative Fuels 2021-2031
出版日期: 2021年02月12日内容资讯: 英文 271 Slides
简介

标题
可持续发展的替代燃料2021-2031
生物燃料,可再生柴油,可持续航空燃料,电子燃料,绿色氨,技术,参与者,市场。

全球能源消耗的增长导致CO2和GHG排放量增加,进而导致全球平均温度升高。包括煤炭,石油和天然气在内的化石燃料的燃烧一直是其背后的主要驱动力,为非化石替代燃料的生产和使用提供了潜在的驱动力,可以帮助减少排放并缓解气候变化。 >

电力和交通运输行业已率先实施可再生能源技术。对于发电而言,风能和太阳能PV等可再生能源是全球许多地区增长最快的能源,降低了电力生产的碳强度。在公路运输中,预计2020年代将是电池电动汽车和其他个人运输方式在生命周期和前期成本上都比内燃机便宜的十年。这将导致电池电动汽车的广泛采用。但是,电力和公路运输的总和不到全球能源消耗和CO2 -e排放量的50%。重工业,供热,航空和航运等行业的脱碳难度要大得多。在这里,直接电气化或使用电池技术不太可能提供解决方案。

因此,在这些部门中液体和气体燃料将是必需的。例如,可再生柴油或HVO(食用氢植物油)有望实现十年的增长。可再生柴油的生产不同于常规生物柴油,因此可将其用作直接燃料,必须在其中混合生物柴油。此外,如果使用废原料(例如用作废食用油或动物脂肪),则可再生柴油可显著减少CO2排放,可归为第二代或高级生物燃料。燃料的增长由美国和欧洲驱动,在这些地区设定的排放目标是该报告提供了有关生产商和生产量的数据以及到2031年的产能预测(MMGY)。尽管有车辆电气化的背景。 >

虽然运输电气化将削弱对道路运输中替代燃料的需求,但可持续航空燃料(SAF)可能是航空业减少排放所必需的。尽管Covid-19大大减少了对航空旅行的需求,但还是在2020年发布了包括宣布购买协议在内的几项公告,这些公告强调了对使用SAF航空脱碳的更多重视。截至2020年底,国际航空运输协会认证了7种SAF生产工艺,可以将其与传统的纯净燃料以不同的比例混合。最突出的SAF是基于加氢处理的酯和脂肪酸,其生产过程与可再生柴油相似。IDTechEx估计,到2020年SAF需求将占航空燃料总需求的<0.1%,并且预计市场将出现显著增长,预计2026年的需求仍将占<1%。

尽管SAF生产目前是生物基的,但电子燃料(电子燃料)除了为生产其他直接燃料和原料提供途径外,还可能在航空业的未来发挥重要作用。甲烷,甲醇和合成气。电子燃料利用电解氢和大气碳,无论是直接从空气中捕获还是从工业点源捕获。因此,它们消除了生物燃料的一些担忧,例如原料的可获得性,土地用途的变化或与粮食种植的潜在竞争。但是,电子燃料市场尚处于发展的早期阶段,电解技术是电子燃料生产的核心部分,可能需要进一步改进和大规模示范,以充分实现电子燃料的潜力。廉价的电力也将是经济生产电子燃料的先决条件。该报告涵盖了生产电子燃料的各种途径,并详细介绍了相关公司以及寻求商业化和扩大其电子燃料技术和生产能力的公司。

由空气中的电解氢和氮气产生的绿色氨气(e-氨)因其较高的液化温度,使其能量密度更高而被吹捧为氢经济的有希望的氢载体。比氢气更容易储存和运输。特别是海上工业可以很好地利用氨作为燃料,尽管人们似乎对此很感兴趣,但目前在海上使用氨作为燃料仅限于很少的项目。还正在进行一些项目,以测试绿色氨作为能量存储形式的可行性,其中氨的生产成本较低(或可再生能源输出较高),而氨的存储量较高,而电力需求较高。在燃气轮机,发动机或潜在的燃料电池中直接使用氨气必须经过仔细控制和监控,以确保NOx排放量低。虽然将氨用作燃料或能源载体仍处于商业化的早期阶段,但绿色氨的生产本身将很重要,因为该化学品已在全球范围内用作肥料,目前的生产通常依赖于使用天然气作为原料。

沼气或生物液化天然气(液化天然气)是替代氨气运输的替代品,它们在稳定具有大量可再生能源的电网以及降低热需求的碳中也可以发挥关键作用。沼气可以得益于这样一个事实,即成千上万的加油站已经使用了液化天然气,因此沼气为向碳中和的过渡提供了可能,而氨将需要新船和翻新。

IDTechEx关于非化石替代燃料的报告涵盖了广泛的燃料,工艺和行业,旨在提供有关替代燃料市场状况的见解,以及它们如何适应低碳经济,这是关键玩家和发展。该报告包括对生物燃料的介绍,并进一步详细介绍了可再生柴油,高级生物燃料,可持续航空燃料,电子燃料(电子燃料)和电子氨,提供了有关技术发展,产量的数据,趋势,分析和讨论。 ,公司公告以及目标应用和行业。

从IDTechEx进行分析访问

所有报告购买都包括与专家分析师进行的长达30分钟的电话时间,专家分析师将帮助您将报告中的关键发现与您要解决的业务问题联系起来。此NEE DS三个月购买的报告中使用。

目录

1。执行摘要

  • 1.1。替代燃料范围
  • 1.2。部门能源消耗
  • 1.3。脱碳途径
  • 1。4.生物燃料世代
  • 1.5。生物燃料激励措施
  • 1.6。美国可再生标识号
  • 1.7。生物燃料面临的挑战
  • 1.8。可再生柴油产能分配
  • 1.9。未来可再生柴油的产能分布
  • 1.10。仁ewable柴油市场区域增长
  • 1.11。可再生柴油的预测
  • 1.12。先进的生物燃料技术概述
  • 1.13。生物燃料技术概述
  • 1.14。快速热解和气化-FT项目实例
  • 1.15。介绍biojet和可持续航空燃料
  • 1.16。生物喷射/SAF工艺路径
  • 1.17。2020年的公告
  • 1.18。可持续航空燃料激励措施
  • 1.19。SAF需求预测,十亿升
  • 1.20。SAF需求预测,十亿美元
  • 1.21。关于SAF的总结
  • 1.22。绿氨开发阶段
  • 1.23。绿氨项目量
  • 1.24。氨气运输项目清单
  • 1.25。电子燃料生产途径概述
  • 1.26。电子燃料
  • 1.27。通往电子燃料生产的途径
  • 1.28。电子燃料玩家
  • 1.29。电子燃油容量公告
  • 1.30。电子燃料的应用
  • 1.31。比较低碳解决方案
  • 1.32。非化石替代燃料开发阶段
  • 1.33。比较替代燃料
  • 1.34。比较替代燃料-SWOT
  • 1.35。生物燃料供应链
  • 1.36。电子燃料供应链
  • 1.37。低碳可持续性的权衡

2。简介

  • 2.1。全球排放推动温度上升
  • 2.2。部门能源消耗
  • 2.3。运输能源消耗
  • 2.4。运输排放
  • 2.5。工业能耗
  • 2.6。工业能源需求
  • 2.7。住宅能耗
  • 2.8。住宅供暖需求-英国示例
  • 2.9。脱碳途径
  • 2.10。脱碳选择的绿色证明

3。生物燃料概述

  • 3.1.1。生物燃料的作用
  • 3.1.2。生物燃料循环
  • 3.1.3。生物燃料世代
  • 3.1.4。定义先进和可再生燃料
  • 3.1.5。生物燃料激励措施
  • 3.1.6。美国可再生标识号
  • 3.1.7。2020年美国RIN价格
  • 3.1.8。美国可再生柴油增长的驱动力
  • 3.1。9.欧盟生物燃料目标
  • 3.1.10。欧盟生物燃料可持续性
  • 3.1.11。生物燃料面临的挑战
  • 3.1.12。生物燃料的现状-美国
  • 3.1.13。生物燃料的现状-欧洲
  • 3.1.14。生物燃料的现状-巴西
  • 3.1.15。生物燃料的现状-中国,印度尼西亚
  • 3.1.16。公路运输的机遇与威胁
  • 3.1.17。第一代生物乙醇
  • 3.1.18。常规生物柴油
  • 3.2。先进的生物燃料
    • 3.2.1。第二代生物燃料生产工艺
    • 3.2.2。生物燃料生产工艺的发展
    • 3.2.3。生物燃料技术概述
    • 3.2.4。气化-FT项目实例
    • 3.2.5。快速热解和热液气化工程为例ES
    • 3.2.6。费-托项目气化
    • 3.2.7。红石生物燃料
    • 3.2.8。速度
    • 3.2.9。支链生物能源
    • 3.2.10。席尔瓦绿色燃料
    • 3.2.11。生物油
    • 3.2.12。杰沃
    • 3.2.13。沼气概论
    • 3.2.14。藻类生物燃料
  • 3.3。可再生柴油市场
    • 3.3.1。可再生柴油介绍
    • 3.3.2。生物柴油和生物喷气燃料
    • 3.3.3。生物和可再生柴油生产
    • 3.3.4。更新柴油生产能力
    • 3.3.5。可再生柴油市场扩张
    • 3.3.6。可再生柴油市场区域增长
    • 3.3.7。可再生柴油市场区域份额
    • 3.3.8。可再生柴油市场扩展-加氢处理
    • 3.3.9。可再生柴油产能分配
    • 3.3.10。未来可再生柴油的产能分布
    • 3.3.11。Eni SpA-霍尼韦尔
    • 3.3.12。雀巢
    • 3.3.13。内斯特案例研究
    • 3.3.14。可再生柴油的预测
    • 3.3.15 。可再生柴油预测-UCO可用性
    • 3.3.16。再生柴油的机会
  • 3.4。可持续航空燃料市场
  • 3.5。航空能耗
  • 3.6。生物喷气机和可持续航空燃料
  • 3.7。生物燃料是航空脱碳的关键
  • 3.8。航空燃油需求
  • 3.9。covid-19的影响
  • 3.10。2020年的公告
  • 3.11。减少二氧化碳的措施
  • 3.12。科西亚
  • 3.13。SAF认证流程
  • 3.14。生物喷气和可持续航空燃料介绍
  • 3.15。航空燃油成分
  • 3.16。生物柴油和生物喷气燃料
  • 3.17。生物喷气燃料生产途径概述
  • 3.18。生物喷气燃料原料和生产概述
  • 3.19。生物喷射/SAF工艺路径
  • 3.20。P2X的SAF
  • 3.21。可持续航空燃料激励措施
  • 3.22。商业计划
  • 3.23。Covid-19 vs绿色复苏
  • 3.24。SAF市场
  • 3.25。可持续航空燃料包销协议小号
  • 3.26。生产能力按工艺途径
  • 3.27。SAF生产增长
  • 3.28。价格
  • 3.29。SAF生产成本
  • 3.30。关于SAF的总结
  • 3.31。航空燃油需求推断和容量
  • 3.32。SAF需求预测,十亿升
  • 3.33。SAF需求预测-十亿美元

4。电子燃料

  • 4.1。电子燃料简介
  • 4.2。点源二氧化碳捕获
  • 4.3。什么是直接空气捕获(DAC)?
  • 4.4。我thods DAC的
  • 4.5。DAC技术带来的挑战
  • 4.6。电燃料生产技术
  • 4.7。电子燃料生产途径概述
  • 4.8。电子燃料的类型
  • 4.9。通往电子燃料生产的途径
  • 4.10。电子燃料生产技术
  • 4.11。通往电子燃料生产的途径
  • 4.12。燃料电池介绍
  • 4.13。燃料电池和电解槽概述
  • 4.14。电解至X
  • 4.15。电解基础知识
  • 4.16。电解槽概述
  • 4.17。固体氧化物电解槽简介
  • 4.18。固体氧化物电解槽和燃料电池的材料
  • 4.19。对国有企业的兴趣
  • 4.20。SOEC合成气生产
  • 4.21。Sunfire燃料电池有限公司
  • 4.22。靈活的SOEC操作?
  • 4.23。哈尔多·托普索
  • 4.24。电解槽降解
  • 4.25。固体氧化物电解槽播放器
  • 4.26。室温电化学还原CO2
  • 4.27。电化学减少二氧化碳的产品
  • 4.28。电子燃料企业和市场概况
  • 4.29。北欧蓝原油
  • 4.30。Synhelion太阳能
  • 4.31。普罗米修斯燃料
  • 4.32。普罗米修斯燃料工艺
  • 4.33。碳工程
  • 4.34。碳回收国际
  • 4.35。作品12
  • 4.36。Opus 12技术
  • 4.37。辣椒
  • 4.38。左旋体
  • 4.39。哥白尼P2X和MefCO2项目
  • 4.40。西门子-赢创P2X飞行员
  • 4.41。奥迪合成燃料
  • 4.42。P2X的SAF
  • 4.43。电子燃料玩家
  • 4.44。电子燃油容量城市公告
  • 4.45。电解/燃料电池制造商
  • 4.46。电子燃料的应用
  • 4.47。电子燃料应用备注
  • 4.48。评估电子燃料的作用

5。绿色氨水

  • 5.1。氢气和氨气简介
  • 5.2。氨生产
  • 5.3。反向氨燃料电池
  • 5.4。氢或氨经济
  • 5.5。绿氨
  • 5.6。使用氨的效率
  • 5.7。氨作为储能
  • 5.8。氨作为燃烧燃料
  • 5.9。氨气燃气轮机
  • 5.10。日本共烧氨
  • 5.11。燃料电池用氨
  • 5.12。直接氨燃料电池
  • 5.13。氨项目及展望
  • 5.14。FREA氨示范厂
  • 5 .15。西门子的绿色氨水演示器
  • 5.16。蒂森克虏伯/H2U绿氨水演示器
  • 5.17。减少奈尔鹼性电解槽的成本
  • 5.18。硝酸绿氨
  • 5.19。绿氨项目量
  • 5.20。绿氨项目
  • 5.21。大规模生产绿色氨
  • 5.22。绿氨开发阶段
  • 5.23。评估氨的作用
  • 5.24。评估氨
  • 5.25。替代燃料比较

6。运送绿色氨水

  • 6.1。替代燃料在运输中的作用
  • 6.2。零排放运输
  • 6.3。为什么在海上使用绿色氨水?
  • 6.4。新闻中的氨气
  • 6.5。船舶排放:问题
  • 6.6。海洋排放法规介绍
  • 6.7。减少SOx比NOx更重要
  • 6.8。二氧化碳运输目标
  • 6.9。运输预测中的二氧化碳
  • 6.10。监管发展时间表
  • 6.11。海上电气化
  • 6.12。为什么电池可以提供帮助 6.13。节省燃料成本和投资回报率
  • 6.14。海上电气化的障碍
  • 6.15。Equinor-Eidesvik海上氨燃料电池船
  • 6.16。氨运输
  • 6.17。曼能源解决方案2冲程发动机
  • 6.18。IHI公司-LNG拖船
  • 6.19。氨气运输项目清单
  • 6.20。液化天然气运输
  • 6.21。液化天然气的环境效益
  • 6.22。氢,氨或生物液化天然气
  • 6.23。氨气或生物液化天然气运输

7。考虑可持续发展

  • 7.1。电动汽车的底层驱动程序
  • 7.2。生物燃料的可持续性
  • 7.3。土地用途变化产生的排放
  • 7.4。每MJ的燃料碳强度比较
  • 7.5。每公里燃料碳强度比较 < li> 7.6。生物燃料世代的土地使用排放
  • 7.7。生物燃料碳排放
  • 7.8。电动汽车的碳排放
  • 7.9。锂离子材料的可持续性
  • 7.10。低碳可持续性的权衡
  • 7.11。比较低碳解决方案
目录
Product Code: ISBN 9781913899332

Title:
Sustainable Alternative Fuels 2021-2031
Biofuels, renewable diesel, sustainable aviation fuels, e-fuels, green ammonia, technologies, players, markets.

Growth in global energy consumption has caused CO2 and GHG emissions to rise, in turn causing an increase in average global temperatures. The combustion of fossil fuels including coal, oil, and natural gas, has been a key driver behind this, providing the underlying driver for the production and use of non-fossil alternative fuels that can help reduce emissions and mitigate against climate change.

The electrical power and transportation sectors have been first to implement renewable technologies. For electricity generation, renewable power sources such as wind and solar PV are the fastest growing energy source for many regions worldwide, reducing the carbon intensity of electricity production. In on-road transportation, the 2020s are forecast to be the decade where battery electric cars and other personal transport modes become cheaper, on both a lifetime- and upfront-cost basis, than their internal combustion engine counterparts. This will lead to widespread battery electric vehicle adoption. However, combined, electricity and on-road transportation account for less than 50% of global energy consumption and CO2 -e emissions. Sectors including heavy industry, heating, aviation, and shipping are far more difficult to decarbonise. Here, direct electrification or use of battery technology is unlikely to provide a solution.

Liquid and gaseous fuels will therefore be necessary in these sectors. Renewable diesel or HVO (hydrotreated vegetable oil) for example is set for a decade of growth. Production of renewable diesel differs from conventional biodiesel, allowing it to be used as a drop-in fuel, where biodiesel will have to be blended. Further, if waste feedstocks are used, such as used cooking oil or animal fats, renewable diesel can offer significant CO2 emissions reductions and be classified as a 2nd generation or advanced biofuel. Growth in the fuel is driven by the US and Europe and emissions targets set in these regions with the report providing data on players and productions volumes and a capacity forecast (MMGY) through to 2031. This despite the backdrop of vehicle electrification.

While transport electrification will erode demand for alternative fuels in road transport, sustainable aviation fuels (SAF) are likely to be necessary for the aviation industry to reduce emissions. Despite Covid-19 significantly reducing demand for air travel, there were several announcements, including purchase agreements, made in 2020 that highlighted greater emphasis on the decarbonisation of aviation through use of SAFs. As of the end of 2020, there were 7 SAF production processes certified by the International Air Transport Association, which can be blended with conventional jet-fuel at various percentages. The most prominent SAF is based on hydroprocessed esters and fatty acids, produced in a process similar to renewable diesel. IDTechEx estimate that demand for SAF in 2020 accounted for <0.1% of total jet-fuel demand and despite significant growth expected from the market, demand in 2026 is forecast to still account for <1%.

While SAF production is currently bio-based, electro-fuels (e-fuels) could play an important role in the future for the aviation sector, in addition to providing a route to producing other drop-in fuels and feedstocks, including methane, methanol, and syngas. E-fuels make use of electrolytic hydrogen and atmospheric carbon, whether captured directly from the air or from an industrial point source. As such, they negate some of the concerns with biofuels, such as feedstock availability, land use changes or potential competition with food cultivation. However, the e-fuel market is at a much earlier stage of development and electrolyser technology, a central part of e-fuel production, is likely to need further improvement and demonstration at scale to fully realise the potential of e-fuels. Cheap electrical power will also be a pre-requisite for economical production of e-fuels. The report covers the various routes that can be taken to produce e-fuels, and details the companies involved and seeking to commercialise and expand their e-fuel technologies and production capacity.

Green ammonia (e-ammonia), produced from electrolytic hydrogen and nitrogen from the air, has been touted as being a promising hydrogen carrier for the hydrogen economy, due its higher temperature at which it liquefies, making it more energy dense than hydrogen, and easier to store and transport. The maritime industry in particular could be well placed to utilise ammonia as a fuel and while there is seemingly interest in it, use of ammonia as a fuel in maritime is currently limited to a very small number of projects. Projects are also underway to test the feasibility of green ammonia as a form of energy storage, with ammonia produced at times of low electricity cost (or high renewable output), stored, and power generated at times of high electricity demand. Direct use of ammonia, in a gas turbine, engine or potentially fuel cell, will have to be carefully controlled and monitored to ensure low levels of NOx emissions. While use of ammonia as a fuel or energy vector is still at the early stages of commercialisation, production of green ammonia will be important in its own right, with the chemical being used globally as a fertilizer and current production generally reliant on the use of natural gas as a feedstock.

An alternative to ammonia for shipping could be biogas or bio-LNG (liquefied natural gas), which could also play a key role in stabilising electricity grids with high levels of renewables and in decarbonising heat demand. Biogas could benefit from the fact that hundreds of tankers already make use of LNG, such that biogas presents the possibility for a smoother transition to carbon-neutrality, where ammonia would require new ships and retrofits.

IDTechEx's report on non-fossil alternative fuels covers a wide scope of fuels, processes and sectors, and aims to provide insight on the state of the market for alternative fuels, how they fit in to a low-carbon economy, the key players and developments. The report includes an introduction to biofuels with further detailed sections on renewable diesel, advanced biofuels, sustainable aviation fuels, electro-fuels (e-fuels), and e-ammonia, providing data, trends, analysis and discussion on technology development, production volumes, company announcements, and targeted applications and sectors.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Alternative fuel scope
  • 1.2. Energy consumption by sector
  • 1.3. Routes to decarbonisation
  • 1.4. Biofuel generations
  • 1.5. Biofuel incentives
  • 1.6. US Renewable identification numbers
  • 1.7. Challenges for biofuel
  • 1.8. Renewable diesel capacity distribution
  • 1.9. Future renewable diesel capacity distribution
  • 1.10. Renewable diesel market regional growth
  • 1.11. Renewable diesel forecast
  • 1.12. Advanced biofuels technology overview
  • 1.13. Biofuel technology overview
  • 1.14. Fast pyrolysis and gasification-FT project examples
  • 1.15. Introduction to biojet and sustainable aviation fuel
  • 1.16. Bio-jet/SAF process pathways
  • 1.17. Announcements during 2020
  • 1.18. Sustainable aviation fuel incentives
  • 1.19. SAF demand forecast, billion litres
  • 1.20. SAF demand forecast, billion $
  • 1.21. Concluding remarks on SAF
  • 1.22. Green ammonia development stage
  • 1.23. Green ammonia project volumes
  • 1.24. Ammonia shipping project list
  • 1.25. e-fuel production pathway overview
  • 1.26. e-fuels
  • 1.27. Routes to e-fuel production
  • 1.28. e-fuel players
  • 1.29. e-fuel capacity announcements
  • 1.30. Applications for e-fuels
  • 1.31. Comparing low-carbon solutions
  • 1.32. Non-fossil alternative fuel development stages
  • 1.33. Comparing alternative fuels
  • 1.34. Comparing alternative fuels - SWOT
  • 1.35. Biofuel supply chain
  • 1.36. E-fuel supply chain
  • 1.37. Low carbon sustainability trade-offs

2. INTRODUCTION

  • 2.1. Global emissions driving temperature increase
  • 2.2. Energy consumption by sector
  • 2.3. Energy consumption in transportation
  • 2.4. Transport emissions
  • 2.5. Energy consumption in industry
  • 2.6. Industrial energy requirements
  • 2.7. Residential energy consumption
  • 2.8. Residential heating demand - UK example
  • 2.9. Routes to decarbonisation
  • 2.10. Green credentials of decarbonisation options

3. OVERVIEW OF BIOFUELS

  • 3.1.1. Role of biofuels
  • 3.1.2. Biofuel cycle
  • 3.1.3. Biofuel generations
  • 3.1.4. Defining advanced and renewable fuels
  • 3.1.5. Biofuel incentives
  • 3.1.6. US Renewable identification numbers
  • 3.1.7. US RIN prices 2020
  • 3.1.8. Drivers of US growth in renewable diesel
  • 3.1.9. EU biofuel targets
  • 3.1.10. EU biofuel sustainability
  • 3.1.11. Challenges for biofuel
  • 3.1.12. Current state of biofuels - USA
  • 3.1.13. Current state of biofuels - Europe
  • 3.1.14. Current state of biofuels - Brazil
  • 3.1.15. Current state of biofuels - China, Indonesia
  • 3.1.16. Opportunity and threat for on-road transport
  • 3.1.17. 1st generation bioethanol
  • 3.1.18. Conventional biodiesel
  • 3.2. Advanced biofuels
    • 3.2.1. 2nd generation biofuel production processes
    • 3.2.2. Biofuel production process developments
    • 3.2.3. Biofuel technology overview
    • 3.2.4. Gasification-FT project examples
    • 3.2.5. Fast pyrolysis and hydrothermal gasification project examples
    • 3.2.6. Gasification to Fischer-Tropsch projects
    • 3.2.7. Redrock Biofuels
    • 3.2.8. Velocys
    • 3.2.9. Fulcrum Bioenergy
    • 3.2.10. Silva Green Fuel
    • 3.2.11. Bio2Oil
    • 3.2.12. Gevo
    • 3.2.13. Introduction to biogas
    • 3.2.14. Algae based biofuels
  • 3.3. Renewable diesel market
    • 3.3.1. Renewable diesel introduction
    • 3.3.2. Biodiesel and bio-jet fuel
    • 3.3.3. Bio- and renewable diesel production
    • 3.3.4. Renewable diesel production
    • 3.3.5. Renewable diesel market expansion
    • 3.3.6. Renewable diesel market regional growth
    • 3.3.7. Renewable diesel market regional shares
    • 3.3.8. Renewable diesel market expansion - hydroprocessing
    • 3.3.9. Renewable diesel capacity distribution
    • 3.3.10. Future renewable diesel capacity distribution
    • 3.3.11. Eni SpA - Honeywell
    • 3.3.12. Neste
    • 3.3.13. Neste case study
    • 3.3.14. Renewable diesel forecast
    • 3.3.15. Renewable diesel forecast - UCO availability
    • 3.3.16. Opportunity for renewable diesel
  • 3.4. Sustainable aviation fuels market
  • 3.5. Energy consumption in aviation
  • 3.6. Bio-jet and sustainable aviation fuels
  • 3.7. Biofuels key to aviation decarbonisation
  • 3.8. Aviation fuel demand
  • 3.9. Impact of covid-19
  • 3.10. Announcements during 2020
  • 3.11. CO2 reduction measures
  • 3.12. CORSIA
  • 3.13. SAF certification process
  • 3.14. Introduction to biojet and sustainable aviation fuel
  • 3.15. Jet fuel composition
  • 3.16. Biodiesel and bio-jet fuel
  • 3.17. Overview of bio-jet fuel production pathways
  • 3.18. Overview of bio-jet fuel feedstocks and production
  • 3.19. bio-jet/SAF process pathways
  • 3.20. SAF from P2X
  • 3.21. Sustainable aviation fuel incentives
  • 3.22. Commercial initiatives
  • 3.23. Covid-19 vs Green Recovery
  • 3.24. SAF market
  • 3.25. Sustainable aviation fuel offtake agreements
  • 3.26. Production capacity by process pathway
  • 3.27. SAF production growth by process
  • 3.28. Price
  • 3.29. SAF production cost
  • 3.30. Concluding remarks on SAF
  • 3.31. Jet fuel demand extrapolation and capacity
  • 3.32. SAF demand forecast, billion litres
  • 3.33. SAF demand forecast- billion $

4. ELECTRO-FUELS (E-FUELS)

  • 4.1. Introduction to e-fuels
  • 4.2. Point source CO2 capture
  • 4.3. What is Direct Air Capture (DAC)?
  • 4.4. Methods of DAC
  • 4.5. Challenges associated with DAC technology
  • 4.6. Electro-fuel production technology
  • 4.7. e-fuel production pathway overview
  • 4.8. Types of e-fuel
  • 4.9. Routes to e-fuel production
  • 4.10. e-fuel production technologies
  • 4.11. Routes to e-fuel production
  • 4.12. Introduction to fuel cells
  • 4.13. Fuel cell and electrolyser overview
  • 4.14. Electrolysis for power-to-X
  • 4.15. Electrolyser basics
  • 4.16. Electrolyser overview
  • 4.17. Introduction to solid oxide electrolysers
  • 4.18. Materials for solid-oxide electrolysers and fuel cells
  • 4.19. Interest in SOECs
  • 4.20. SOEC syngas production
  • 4.21. Sunfire Fuel Cells Gmbh Power-to-liquid
  • 4.22. Flexible SOEC operation?
  • 4.23. Haldor Topsoe
  • 4.24. Electrolyser degradation
  • 4.25. Solid oxide electrolyser cell players
  • 4.26. Room-temperature electrochemical CO2 reduction
  • 4.27. Electrochemical CO2 reduction products
  • 4.28. E-fuel players and market overview
  • 4.29. Nordic Blue Crude
  • 4.30. Synhelion solar fuel
  • 4.31. Prometheus fuels
  • 4.32. Prometheus fuels process
  • 4.33. Carbon Engineering
  • 4.34. Carbon Recycling International
  • 4.35. Opus 12
  • 4.36. Opus 12 technology
  • 4.37. Caphenia
  • 4.38. Lectrolyst
  • 4.39. Copernicus P2X and MefCO2 projects
  • 4.40. Siemens - Evonik P2X pilot
  • 4.41. Audi synthetic fuel
  • 4.42. SAF from P2X
  • 4.43. e-fuel players
  • 4.44. e-fuel capacity announcements
  • 4.45. Electrolyser/fuel cell manufacturers
  • 4.46. Applications for e-fuels
  • 4.47. e-fuel applications remarks
  • 4.48. Evaluating the role of e-fuels

5. GREEN AMMONIA

  • 5.1. Introduction to hydrogen and ammonia
  • 5.2. Ammonia production
  • 5.3. Reverse ammonia fuel cell
  • 5.4. Hydrogen or ammonia economy
  • 5.5. Green ammonia
  • 5.6. Efficiency of using ammonia
  • 5.7. Ammonia as energy storage
  • 5.8. Ammonia as a combustion fuel
  • 5.9. Ammonia fuelled gas turbine
  • 5.10. Co-firing ammonia in Japan
  • 5.11. Ammonia for fuel cells
  • 5.12. Direct ammonia fuel cells
  • 5.13. Ammonia projects and outlook
  • 5.14. FREA ammonia demonstration plant
  • 5.15. Siemens' green ammonia demonstrator
  • 5.16. ThyssenKrupp/H2U green ammonia demonstrator
  • 5.17. Nel alkaline electrolyser cost reduction
  • 5.18. Green ammonia nitrate
  • 5.19. Green ammonia project volumes
  • 5.20. Green ammonia projects
  • 5.21. Large-scale green ammonia production
  • 5.22. Green ammonia development stage
  • 5.23. Evaluating the role of ammonia
  • 5.24. Evaluating ammonia
  • 5.25. Alternative fuel comparisons

6. GREEN AMMONIA FOR SHIPPING

  • 6.1. Role of alternative fuels in transport
  • 6.2. Zero emission shipping
  • 6.3. Why green ammonia for maritime?
  • 6.4. Ammonia in the news
  • 6.5. Shipping emissions: the problem
  • 6.6. Introduction to marine emissions regulation
  • 6.7. SOx reductions more important than NOx
  • 6.8. CO2 target for shipping
  • 6.9. CO2 in shipping forecast
  • 6.10. Timeline of regulatory developments
  • 6.11. Maritime electrification
  • 6.12. Why batteries can help
  • 6.13. Fuel cost savings and ROI
  • 6.14. Roadblocks to maritime electrification
  • 6.15. Equinor-Eidesvik Offshore ammonia fuel cell vessel
  • 6.16. Ammonia for shipping
  • 6.17. MAN Energy Solutions 2-stroke engine
  • 6.18. IHI corporation - LNG fuelled tugboat
  • 6.19. Ammonia shipping project list
  • 6.20. LNG in shipping
  • 6.21. Environmental benefit of LNG
  • 6.22. Hydrogen, ammonia or bio-LNG
  • 6.23. Ammonia or bio-LNG for shipping

7. CONSIDERING SUSTAINABILITY

  • 7.1. Underlying Drivers for Electric Vehicles
  • 7.2. Sustainability of biofuels
  • 7.3. Emissions from land use change
  • 7.4. Fuel carbon intensity comparison per MJ
  • 7.5. Fuel carbon intensity comparisons per km
  • 7.6. Land use emissions from biofuel generations
  • 7.7. Biofuel carbon emissions
  • 7.8. Carbon emissions from electric vehicles
  • 7.9. Sustainability of Li-ion materials
  • 7.10. Low carbon sustainability trade-offs
  • 7.11. Comparing low-carbon solutions