表纸
市场调查报告书

关注的固定式蓄电技术:潜在性分析

Potential Stationary Energy Storage Technologies to Monitor

出版商 IDTechEx Ltd. 商品编码 955709
出版日期 内容资讯 英文 120 Slides
商品交期: 最快1-2个工作天内
价格
关注的固定式蓄电技术:潜在性分析 Potential Stationary Energy Storage Technologies to Monitor
出版日期: 2020年09月01日内容资讯: 英文 120 Slides
简介

新兴固定式蓄电技术的市场规模,预计2030年以17亿美元的规模成长。由于电力市场上脱碳化的必要性,再生能源的关注高涨,蓄电设备的引进扩大。

本报告提供关注的固定式蓄电池技术重力蓄电池 (GES),压缩空气蓄电池 (CAES),液体空气蓄电池 (LAES),热能源储存 (TES)的潜在性调查,蓄电技术的发展的过程,固定式蓄电池的重要性,市场成长的影响因素分析,各技术的运行原理,主要企业的配合措施,优点及缺点,产品、计划趋势,市场规模的预测,主要企业简介等资讯。

第1章 摘要整理

第2章 电力电网和蓄电池的重要性

  • 再生能源:能源生产、成本的趋势
  • 固定式蓄电池的重要性扩大
  • 蓄电池的必要性
  • 蓄电池设备
  • 蓄电池的分类
  • ESS、BESS、BTM、FTM
  • 固定式蓄电池市场
  • 固定式蓄电池:新的道路
  • 蓄电池的奖励
  • 成长因素
  • 再生能源自我消费
  • ToU裁定交易
  • 固定收购电价(Feed-In--Tariff,)的阶段性废止
  • 网路电表的阶段性废止
  • 需求收费的削减
  • 其他成长要素等

第3章 重力蓄电池 (GES)

  • 重力蓄电池 (GES)
  • 来自重力技术的计算
  • 活塞为基础的GES
  • GES技术的分类
  • GES:市场进入的可能性
  • ARES
    • 技术概要
    • 推动力驱动器、Ridgeline
    • 技术比较:推动力驱动器、Ridgeline
    • 足迹
    • 市场、技术分析
  • 活塞式重力蓄电池 (PB-GES)
    • 运行原理
    • Energy Vault
    • Gravitricity
    • Mountain Gravity Energy Storage (MGES)
  • 地下抽蓄水力发电蓄电池 (U-PHES)
  • 地下能源储存 (UWES)

第4章 压缩空气蓄电池 (CAES)

  • 发展的过程
  • 技术概要
  • 缺点
  • 非隔热压缩空气蓄电池 (D-CAES)
  • Huntorf
  • McIntosh
  • 隔热压缩空气蓄电池 (A-CAES)
  • A-CAES分析
  • 等温压缩空气蓄电池 (I-CAES)
  • 主要企业
  • 主要企业、计划

第5章 液体空气蓄电池 (LAES)

  • 发展的过程
  • 主要企业、计划
  • 分析师分析等

第6章 热能源储存 (TES)

  • TES技术:概要、分类
  • Diurnal TES Systems
  • 季节的系统、长期间系统等

第7章 企业简介

目录

Title:
Potential Stationary Energy Storage Technologies to Monitor
Emerging technologies for front-of-meter applications: Gravitational Energy Storage, Compressed Air Energy Storage, Liquified Air Energy Storage, and Thermal Energy Storage. Forecast 2020-2030, Technologies, Markets and Players.

"Emerging technologies with a forecasted market value of $ 1.7 billion in 2030. "

Introduction to mechanical energy storage:

When talking about energy storage it is now common to think about Li-ion batteries, due to their success in the automotive sector, portable electronic devices, and stationary applications. In the last few years Li-ion batteries started to be constantly adopted in stationary energy storage with a power output of few kWs up to MWs scale. Although a powerful device, their application can hardly cover the entire range of power and energy demanded by the electricity grid. If one end is dominated by Li-ion batteries, on the other end, pumped hydro energy storage is the reference system to deliver large power output, and store large amounts of energy able to generate electricity for days. Pumped hydro energy storage was the first large power plant built to generate electricity, and still nowadays is the reference technology for large power output.

Between these two main technologies, a number of new technologies with a power output of tens of MWs are currently approaching the market. In the new report released: "Potential Stationary Energy Storage to Monitor", IDTechEx investigated this new group of technologies aiming to address MWs of power output and long storage time.

The technologies defined as mechanical energy storage include different types of technologies, all of them characterised by a large power output from MW size, and a simple mechanical working principles. Among them:

  • Gravitational Energy Storage
  • Compressed Air Energy Storage
  • Liquid Air Energy Storage

These technologies are based on simple mechanical working principles, which allow them to employ well known components, like pumps, ventilators, cranes, and do not employ dangerous materials. A simple working principle implies high round-trip efficiencies, in most cases close to 80%. Finally, differently from electrochemical systems, mechanical energy storage systems are not affected by self-discharge, allowing them to store electricity for an indefinite amount of time.

Large amounts of energy, similarly to mechanical energy storage systems, could also be stored by hydrogen and ammonia. Storing electricity as chemical energy implies the adoption of other technologies like fuel cells, which strongly affect the overall efficiency of the system.

The growing interest in the renewable energies, driven by the necessity to decarbonise the electricity market, is leading to a growing adoption of energy storage devices. While renewable electricity sources allow us to reduce polluting emissions, their variable nature requires extra systems to adjust the timing of energy production and energy consumption. In addition, the adoption of renewable energies is leading to an upgrade of the electricity grid, shifting the power grid from a centralised model, to decentralised energy production. Therefore, the role of energy storage is constantly growing, and with it the technologies involved.

Report content:

Due to growing interest in energy storage devices, in particular for grid application, IDTechEx releases the new report titled: "Potential Stationary Energy Storage to Monitor", introducing an emerging group of technologies.

The report begins with an introduction about the electricity grid, explaining the role of energy storage systems, and the market these devices can address. In the following chapters, the different mechanical energy storage technologies are investigated. For each technology the working principle is initially explained, followed by an analysis of the main companies involved, showing the main advantages and disadvantages of the systems analysed. Moreover, the executive summary provides the reader with a comparison of the different technologies, showing the different TRL (technology readiness level) and MRL (manufacturing readiness level) of the technologies analysed in the report. A comparison of mechanical energy storage with Li-ion batteries and redox flow batteries allows the reader to appreciate the differences between these technologies. In conclusion, a market forecast for the period 2020-2030, in terms of installed power, energy and market size is provided, together with the technology breakdown.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. A Growing Energy Storage Market
  • 1.2. High Potential ES Technologies: Overview
  • 1.3. High Potential ES Technologies: Properties
  • 1.4. High Potential ES Technologies: Technology Segmentation
  • 1.5. Which technology will dominate the market?
  • 1.6. High Potential ES Technologies: Properties Comparison
  • 1.7. High Potential ES Technologies analysis
  • 1.8. Technology/Manufacturing Readiness Level: definitions
  • 1.9. Technology/Manufacturing Readiness Level
  • 1.10. Why not Li-ion or Redox Flow batteries?
  • 1.11. Comparison of energy storage devices
  • 1.12. Market Forecast
  • 1.13. Forecast technology breakdown
  • 1.14. Forecast Methodology
  • 1.15. Forecast Assumptions

2. THE ELECTRICITY GRID AND THE ROLE OF ENERGY STORAGE

  • 2.1. Renewable Energies: Energy generated and cost trend
  • 2.2. The increasingly important role of stationary storage
  • 2.3. Stationary energy storage is not new
  • 2.4. Why We Need Energy Storage
  • 2.5. Energy Storage Devices
  • 2.6. Energy Storage Classification
  • 2.7. ESS, BESS, BTM, FTM
  • 2.8. Stationary Energy Storage Markets
  • 2.9. New avenues for stationary storage
  • 2.10. Incentives for energy storage
  • 2.11. Overview of ES drivers
  • 2.12. Renewable energy self-consumption
  • 2.13. ToU Arbitrage
  • 2.14. Feed-in-Tariff phase-outs
  • 2.15. Net metering phase-outs
  • 2.16. Demand Charge Reduction
  • 2.17. Other Drivers
  • 2.18. Values provided at the customer side
  • 2.19. Values provided at the utility side
  • 2.20. Values provided in ancillary services

3. GRAVITATIONAL ENERGY STORAGE (GES)

  • 3.1.1. Gravitational Energy Storage (GES)
  • 3.1.2. Calculation from Gravitricity technology
  • 3.1.3. Piston Based GES - Energy Stored example
  • 3.1.4. GES Technology Classification
  • 3.1.5. Can the GES reach the market?
  • 3.1.6. Chapter 3. Overview
  • 3.2. ARES
    • 3.2.1. ARES LLC Technology Overview
    • 3.2.2. ARES Technologies: Traction Drive, Ridgeline
    • 3.2.3. Technical Comparison: Traction Drive, Ridgeline
    • 3.2.4. A considerable Landscape footprint
    • 3.2.5. ARES Market, and Technology analysis
  • 3.3. Piston Based Gravitational Energy Storage (PB-GES)
    • 3.3.1. Energy Vault - Technology working principle
    • 3.3.2. Energy Vault - Brick Material
    • 3.3.3. Energy Vault Technology and market analysis
    • 3.3.4. Gravitricity - Piston-based Energy storage
    • 3.3.5. Gravitricity technology analysis
    • 3.3.6. Mountain Gravity Energy Storage (MGES): Overview
    • 3.3.7. Mountain Gravity Energy Storage (MGES): Analysis
  • 3.4. Underground - Pumped Hydro Energy Storage (U-PHES)
    • 3.4.1. Underground - PHES:
    • 3.4.2. U-PHES - Gravity Power
    • 3.4.3. U-PHES - Heindl Energy
    • 3.4.4. Detailed description of Heindl Energy technology
    • 3.4.5. U-PHES - Heindl Energy
    • 3.4.6. Underground - PHES: Analysis
    • 3.5. Underwater Energy Storage (UWES)
    • 3.5.1. Under Water Energy Storage (UWES)
    • 3.5.2. Under Water Energy Storage (UWES) - Analysis

4. COMPRESSED AIR ENERGY STORAGE (CAES)

  • 4.1. CAES Historical Development
  • 4.2. CAES Technologies overview
  • 4.3. Drawbacks of CAES
  • 4.4. Diabatic Compressed Energy Storage (D-CAES)
  • 4.5. Huntorf D-CAES - North of Germany
  • 4.6. McIntosh D-CAES - US Alabama
  • 4.7. Adiabatic - Compressed Air Energy Storage (A-CAES)
  • 4.8. A - CAES analysis
  • 4.9. Isothermal - Compressed Air Energy Storage (I - CAES)
  • 4.10. Main players in CAES technologies
  • 4.11. CAES Players and Project

5. LIQUID AIR ENERGY STORAGE (LAES)

  • 5.1. Liquid Air Energy Storage
  • 5.2. The Dawn of Liquid Air in the Energy Storage Market
  • 5.3. Sumitomo Industries invests in Highview Energy
  • 5.4. Hot and Cold Storage Materials:
  • 5.5. Industrial Processes to Liquify Air
  • 5.6. LAES Historical Evolution
  • 5.7. LAES Companies and Projects
  • 5.8. LAES Players
  • 5.9. LAES Analyst analysis

6. THERMAL ENERGY STORAGE (TES)

  • 6.1. TES Technology Overview and Classification
  • 6.2. Diurnal TES Systems - Domestic application
  • 6.3. Diurnal TES Systems - Solar Thermal Power Plants (CSP)
  • 6.4. Seasonal and long-duration TES Systems
  • 6.5. Seasonal TES Systems - Underground TES
  • 6.6. Seasonal TES Systems - Solar Ponds

7. COMPANY PROFILES