表纸
市场调查报告书

结构用电子产品&电器的智慧材料:2019-2029年

Smart Materials as Structural Electronics and Electrics 2019-2029

出版商 IDTechEx Ltd. 商品编码 721790
出版日期 内容资讯 英文 250 Slides
商品交期: 最快1-2个工作天内
价格
Back to Top
结构用电子产品&电器的智慧材料:2019-2029年 Smart Materials as Structural Electronics and Electrics 2019-2029
出版日期: 2018年11月30日内容资讯: 英文 250 Slides
简介

本报告提供结构用电子产品&电器的智慧材料的市场调查,市场定义和概要,结构用电子产品的发展过程与未来展望,智慧材料的功能、形态必要条件,主要的制造技术概要、特征,技术开发趋势,主要产品的简介,企业、研究机关、大学的各种配合措施等资料汇整。

第1章 摘要整理、总论

  • 定义
  • 本报告书的目的
  • 重要性
  • 案例
  • 实行技术
  • 课题
  • 市场规模
  • 新产品、技术发展蓝图

第2章 简介:过程、定义、能力、展望

  • 结构用电子产品的发展的过程

第3章 所需的智慧材料的功能、形态

  • 概要
  • 功能、形态的合理性
  • 功能、形态:目前选项

第4章 制造技术:领导的套模电子产品 (IME)

  • IME是什么?
  • 所谓IME流程
  • IME导电油墨必要条件
  • 材料组合的多样性
  • 功能性材料的幅度的扩大
  • 针对用途、商业化的发展、试制:概要
  • IME功能性材料供应商
  • TactoTek的方法:IME SE的领导者

第5章 其他制造技术:软性印刷、MID、3DPE、喷雾等

  • 对3D表面的直接印刷
    • Optomec Aerosol:市场领导
    • 软性印刷范例:
      • Harvard University
      • University of Illinois at Urbana Champaign
      • Optomec
    • Pulse Electronics
    • GKN、Boeing:787用电热器
    • Nano Dimension (以色列)、Ceradrop (法国)
    • Neotech、Novacentrix、nScrypt
  • 模塑互连元件 (MID):LDS
    • 概要
    • MID、LDS:LPKF, Festo
    • IME的LDS的各种用途
    • MID - LPKF、Molex范例
    • MID - TRW范例
  • 印刷PCB
    • 对使用了Ag奈米粒子墨水的高速PCB试制的进步
    • 印刷PCB:新加入企业
  • 转印:试验带印刷和层压
  • 3D印刷电子产品
    • 概要
    • 丰田
    • Aconity3D
    • Functionalize
    • Harvard University
    • Princeton University
    • Nascent Objects
    • AgIC
    • Voltera
    • Cartesian
    • Botfactory
    • Voxel8
    • 制造选择比较

第6章 大规模SE:汽车、飞机、船舶、建造物、道路

  • 概要
  • 汽车
    • 载重重超级电容器结构体
    • Imperial College London
    • Queensland University of Technology
    • Trinity College Dublin
    • Vanderbilt University
    • ZapGo
  • PV车身
    • 车身用先进薄膜PV
    • Sion Motors
    • IFEVS
    • EIEV
  • 发电轮胎
    • Triboelectric Univ
    • Univ. Bolton
  • 飞机
    • 太阳能飞机范例:Sunstar
    • Sunseeker Duo
    • Solar Impulse
    • SolarShip
    • American Semiconductor:智慧机体、翼
    • Boeing 787 Dreamliner
    • Airbus:3D印刷
    • Nervous system:NASA
    • Morphing wing:FlexFoil、NASA等
  • 船艇、船舶的大面积波浪发电
    • EIEV船
    • 案例:Okeanos Pearl
    • PlanetSolar、SolarLab
    • EIEV调查船等
  • 大楼、建造物
    • 活性智慧玻璃
    • Samsung OLE窗
    • 建筑物一体型PV (BIPV)
    • 太阳能电池瓷砖
    • 太阳能温室
  • 智慧牙桥:案例
  • 智慧负载
    • 智慧负载的潜在技术
    • 目前道路研究计划:压电动能采集
    • 太阳能道路:Missouri Department of Transportation
    • 太阳能道路
    • Bouygues Colas
    • Pavenergy
    • TNO SolaRoad等

本网页内容可能与最新版本有所差异。详细情况请与我们联系。

目录

The new IDTechEx report, "Smart Materials as Structural Electronics and Electrics 2019-2029" is alone in giving the big picture about a new industry transforming the materials industry and creating many new billion dollar businesses making things previously impossible to make such as electric cars, boats and aircraft that never recharge and windows that make electricity and use it to darken according to need. Encompassing making dumb steel, plastic, glass and concrete smart, it reveals many gaps in the market, role models of success and future roadmaps for the technology. We even give a technical and market view of twenty years ahead.

The executive summary and conclusions has many new infographics and graphs concisely presenting the findings of the PhD level IDTechEx analysts that travel intensively and otherwise research this emerging topic. The introduction explains the historical evolution of this approach and gives a taster of the melodrama to come. For example, darkening your window in an aircraft is with us now but a complete airframe nervous system and more are being trialled. The following chapters 3.4 and 5 give a deep understanding of the main technologies and materials involved, now you can touch the interior trim of your car to adjust your seat and solar wings of a huge drone keep it in the upper atmosphere for months, soon years. From in mold electronics to 3D printed electronics what materials and processes are used, how will they improve and what materials will be needed? What new products are becoming possible? For example, the term massless power has been coined by making a car body into a load-bearing supercapacitor and/or photovoltaics at a lighter weight than the dumb steel that is replaced. Such technologies will create multi-billion dollar businesses but bankrupt laggards. Chapter 6 closely examines what will make the most money - structural electronics for large things - road vehicles, trains, boats, ships, aircraft, bridges buildings, roads and more. What new materials and structures arrive when. Gaps in the market? Current examples? Good and bad research programs? All is assessed.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition
  • 1.2. Purpose of this report
  • 1.3. Significance
  • 1.4. Examples
    • 1.4.1. Reduce system weight, size, cost and improve functionality, reliability, life.
    • 1.4.2. Make new things possible
  • 1.5. Wide variety of enabling technologies
    • 1.5.1. In use
    • 1.5.2. Working well in laboratory and trials
    • 1.5.3. Later
  • 1.6. Much can be done with metal patterning on appropriate substrates
  • 1.7. Examples of organisations making the most commercially significant advances in structural electronics and electrics
  • 1.8. Challenges
  • 1.9. Market sizes
    • 1.9.1. Energy independent electric vehicles 2019-2039, mainly cars
    • 1.9.2. Solar road forecast $ billion
    • 1.9.3. Road sensing, non-solar harvesting, allied harvesting forecast
    • 1.9.4. Smart glass market $ million
    • 1.9.5. RFID sensor tags and systems $ million
  • 1.10. New product and technology roadmap 2019-2039

2. INTRODUCTION: HISTORY, DEFINITIONS, CAPABILITIES, DREAMS

  • 2.1. Progression to structural electronics
    • 2.1.1. Sequence
    • 2.1.2. 1900-1950: Components-in-a-box
    • 2.1.3. 1950-2016: PCBs in a box
    • 2.1.4. PCBs: multilayer, vias as heat pipes, load bearing
    • 2.1.5. Components and circuits shaped to fit into gaps: BAE Systems, Lola-Drayson, Within Technologies
    • 2.1.6. Examples of true structural electronics: Plastic Electronic, Smart Plastics Network
    • 2.1.7. Examples: Ford and T-ink
    • 2.1.8. Examples: Molex, VTT, Harvard University
    • 2.1.9. Examples: Hybrid structural-conventional: University of Texas at El Paso
    • 2.1.10. See the forest

3. FUNCTIONS AND FORMATS OF REQUIRED SMART MATERIALS

  • 3.1. Overview
    • 3.1.1. Huge materials opportunities
    • 3.1.2. Complex, evolving requirements, high added value
  • 3.2. Functions and formats rationale
  • 3.3. Functions and formats: current choices

4. MANUFACTURING: IN MOLD ELECTRONICS IME IN THE LEAD

  • 4.1. What is in-mould electronics?
    • 4.1.1. IME products have exceptional environmental tolerance
    • 4.1.2. Aircraft aerofoil flap with integral heater for de-icing using in-mold electronics
    • 4.1.3. IME: 3D friendly process for circuit making
    • 4.1.4. Related processes comparison IMD, IME, MID/LDS
  • 4.2. What is the in-mold electronic process?
    • 4.2.1. Comments on requirements
  • 4.3. Conductive ink requirements for IME
    • 4.3.1. New ink requirements: stretchability
    • 4.3.2. New ink requirements: portfolio approach
  • 4.4. Diversity of material portfolio
    • 4.4.1. New ink requirements: surviving heat stress
    • 4.4.2. New ink requirements: stability
    • 4.4.3. All materials in the stack must be reliable
    • 4.4.4. Design: general observations
  • 4.5. Expanding range of functional materials
    • 4.5.1. Stretchable carbon nanotube transparent conducting films
    • 4.5.2. Beyond IME conductive inks: adhesives
    • 4.5.3. Beyond conductive inks: thermoformed polymeric actuator?
  • 4.6. Overview of applications, commercialization progress, and prototypes
    • 4.6.1. In-mold electronic application: automotive
    • 4.6.2. White goods, medical and industrial control (HMI)
    • 4.6.3. Is IME commercial yet?
    • 4.6.4. First (ALMOST) success story: overhead console in cars
    • 4.6.5. Commercial products: wearable technology
    • 4.6.6. Automotive: direct heating of headlamp plastic covers
    • 4.6.7. Automotive: human machine interfaces
    • 4.6.8. White goods: human machine interfaces
    • 4.6.9. Mobile phone storage
  • 4.7. IME functional material suppliers
    • 4.7.1. Emerging value chain
    • 4.7.2. Stretchable conductive ink suppliers multiply
    • 4.7.3. IME conductive ink suppliers multiply
    • 4.7.4. IME with functional films made with evaporated lines
  • 4.8. Approach of TactoTek: the IME SE leader
    • 4.8.1. TactoTek Profile

5. OTHER MANUFACTURING: CONFORMAL PRINTING, MID, 3DPE, SPRAYING ETC

  • 5.1. Printing directly on a 3D surface
    • 5.1.1. Optomec Aerosol: market leader
    • 5.1.2. Conformal printing examples: Harvard University, University of Illinois at Urbana Champaign, Optomec
    • 5.1.3. Pulse Electronics
    • 5.1.4. Spraying leading edge 787 heater GKN, Boeing
    • 5.1.5. Nano Dimension Israel, Ceradrop France
    • 5.1.6. Neotech, Novacentrix, nScrypt
  • 5.2. Molded Interconnect Devices: Laser Direct Structuring
    • 5.2.1. Overview
    • 5.2.2. MID and LDS: LPKF, Festo
    • 5.2.3. Applications of laser direct structuring in IME
    • 5.2.4. MID - LPKF and Molex examples
    • 5.2.5. MID - TRW example
  • 5.3. Genuinely Printed PCB
    • 5.3.1. Progress towards rapid PCB prototyping using Ag nanoparticle inks
    • 5.3.2. Printed PCB: Newcomers
  • 5.4. Transfer printing: printing test strips & using lamination to compete with IME
  • 5.5. 3D printed electronics
    • 5.5.1. Overview
    • 5.5.2. Toyota Japan
    • 5.5.3. Aconity3D Germany, USA
    • 5.5.4. Functionalise USA
    • 5.5.5. Harvard University
    • 5.5.6. Princeton University
    • 5.5.7. Nascent Objects
    • 5.5.8. aGic Japan, Voltera Canada
    • 5.5.9. Cartesian USA, Botfactory USA
    • 5.5.10. Voxel8
    • 5.5.11. Manufacturing options compared

6. LARGE SE: VEHICLES, AIRCRAFT, SHIPS, BUILDINGS, ROADS

  • 6.1. Overview
    • 6.1.1. Road vehicles
    • 6.1.2. Solar trains, aircraft
    • 6.1.3. EH transducer principles and materials
    • 6.1.4. Best photovoltaic research-cell efficiencies
    • 6.1.5. Multipurpose vehicle bodywork: Daimler dream
    • 6.1.6. Self Healing
  • 6.2. Vehicles
    • 6.2.1. Load bearing supercapacitors replace steel bodywork
    • 6.2.2. Dream for supercapacitors and their derivatives: other planned benefits
    • 6.2.3. Imperial College London supercapacitor bodywork
    • 6.2.4. Queensland University of Technology Australia, Rice University USA
    • 6.2.5. Trinity College Dublin Ireland
    • 6.2.6. Vanderbilt University USA
    • 6.2.7. ZapGo UK
  • 6.3. Photovoltaic vehicle bodywork
    • 6.3.1. Parameters of 17 types
    • 6.3.2. Advanced thin film PV on car bodywork
    • 6.3.3. Sion Motors Germany, IFEVS Italy EIEV
  • 6.4. Electricity generating tires
    • 6.4.1. Triboelectric Univ Wisconsin Madison
    • 6.4.2. Triboelectric tires low power only? Georgiatech
    • 6.4.3. Dream of piezoelectric tires: Univ. Bolton UK
  • 6.5. Aircraft
    • 6.5.1. Solar aircraft examples: Sunstar
    • 6.5.2. Sunseeker Duo USA
    • 6.5.3. Solar Impulse Switzerland
    • 6.5.4. SolarShip Canada
    • 6.5.5. American Semiconductor: smart fuselage and wings
    • 6.5.6. Boeing 787 Dreamliner tinted windows
    • 6.5.7. Airbus concept 3D printed plane
    • 6.5.8. Nervous system: NASA
    • 6.5.9. Morphing wing: FlexFoil and NASA
    • 6.5.10. Conformal Load-Bearing Antenna Structure CLAS for aircraft
    • 6.5.11. Smart Composite Actuator SCA for aircraft
    • 6.5.12. Slotted Waveguide Antenna Stiffened Structure SWASS for aircraft
    • 6.5.13. Structural health monitoring aircraft NASA
  • 6.6. Boats, ships structural wide area wave power
    • 6.6.1. EIEV ships
    • 6.6.2. Example: 'Okeanos Pearl' New Zealand
    • 6.6.3. PlanetSolar, SolarLab Germany
    • 6.6.4. Research boat EIEV France
    • 6.6.5. IDTechEx concept: 3MW energy independent ship
    • 6.6.6. MW on the sea using flexible triboelectrics
    • 6.6.7. Triboelectric harvesting device timeline 2019-2039 with approximate power
    • 6.6.8. The DEG dream for wave power: Delft University Netherlands SBM Offshore UK
    • 6.6.9. University of Dallas Twistron electrostatic harvester for sails
  • 6.7. Buildings
    • 6.7.1. Buildings have a major impact on city energy consumption
    • 6.7.2. Active smart glass in buildings
    • 6.7.3. Active and passive glass darkening materials
    • 6.7.4. Samsung OLED window
    • 6.7.5. Building integrated photovoltaics BIPV
    • 6.7.6. Solar house tiles with battery
    • 6.7.7. Three in one windows NREL
    • 6.7.8. Building integrated photovoltaic thermal (BIPVT)
    • 6.7.9. Solar greenhouses generate electricity and optimally grow crops UC Santa Cruz
    • 6.7.10. Solar greenhouses: University of Colorado Boulder 2018
    • 6.7.11. Printable solar materials could turn parts of a house into solar panels
  • 6.8. Smart bridges: examples
  • 6.9. Smart roads
    • 6.9.1. Overview: road material becomes smart
    • 6.9.2. Realistic technology potential for smart roads
    • 6.9.3. Deicing and snow removal risks disappear with self-powered, automated road heating
    • 6.9.4. Current road research projects: piezoelectric motion harvesting
    • 6.9.5. Realistic solar roads, parking, paths, barriers overview
    • 6.9.6. Solar Roadways and Missouri Department of Transportation USA
    • 6.9.7. Solar roadway powering interactive lighting: Solar Roadways USA
    • 6.9.8. Solar Roadways structure and Sandpoint projects
    • 6.9.9. Bouygues Colas France
    • 6.9.10. Solar road Pavenergy China
    • 6.9.11. TNO SolaRoad Netherlands
    • 6.9.12. Japan: trials and concepts: Misawa and others
    • 6.9.13. Gantry vs road surface: Korea, China
    • 6.9.14. Solar wind/ sound barriers: Eindhoven University of Technology
    • 6.9.15. Smart cement mixtures could turn buildings into batteries
Back to Top