NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

电动船舶、油电混合船舶:2019-2029年

Electric and Hybrid Boats and Ships 2019-2029

出版商 IDTechEx Ltd. 商品编码 409570
出版日期 内容资讯 英文 261 Slides
商品交期: 最快1-2个工作天内
价格
电动船舶、油电混合船舶:2019-2029年 Electric and Hybrid Boats and Ships 2019-2029
出版日期: 2019年09月30日内容资讯: 英文 261 Slides
简介

全球电动船舶、油电混合船舶的市场规模,预估在2029年之前将会超过120亿美元。

本报告调查了全球电动/油电混合船舶市场,提供不同船舶种类(渡轮、离岸支援船、拖船、渔船、游轮、贸易)及产业单元(娱乐、商业、工业)类别的预测、并总结了推进技术、电池技术的趋势、无人船、环境发电船的实例、未来的可能性分析等。

第1章 执行摘要

第2章 海运政策□法规□目标

  • 海运政策
  • 减少氧化物比氮氧化物还重要
  • Annex VI
  • Annex VI─硫磺
  • 低硫磺燃料的价格
  • Annex VI - 氮氧化物
  • 洗涤器
  • 美国是
  • 船舶的二氧化碳目标
  • 美国
  • 亚洲
  • 欧洲

第3章 娱乐船、高级休闲船

  • 什么是娱乐用船舶?
  • 马达类型概要
  • 娱乐船市场
  • 地区船外机的销售额
  • ICOMIA(小型船舶构造标准)调查
  • 主要实例、其他

第4章 商业用船舶 (非贸易船)

  • 船舶用语
  • 电子、油电混合船舶的结构
  • 油电混合电池推进
  • 电池推进
  • 离岸支援船
  • 拖船
  • 渔船
  • 渡轮
  • e-渡轮专案的主要实例、其他

第5章 商业用船舶 (贸易船)

  • 海上贸易与世界经济
  • 世界经济与船舶需求
  • 造船是周期性的
  • 贸易船
  • 造船:国别
  • 主要实例、其他

第6章 推进技术

  • 哪种技术会被采用?
  • 柴油引擎
  • 柴油引擎&电子或油电混合推进
  • 燃气涡轮发动机
  • 水刀
  • 瓦斯燃料或三元燃料推进
  • 蒸汽涡轮发动机
  • 生质燃料
  • 风力
  • Norsepower公司的旋转帆规格
  • 太阳光

第7章 电池技术的概要

  • 为何船舶用的电池不同?
  • DNG.VL 类型的认可
  • 安全性:令人犹疑?
  • 热失控
  • Orca ESS
  • 电池种类:
  • 锂离子的好处
  • 各种电池系统的比能量、能量密度的比较
  • 什么是锂离子电池?
  • 电池的家族树:以锂为底、其他

第8章 船舶用超级电容器

  • 什么是超级电容器
  • 相关超级电容器的表现
  • 船舶电力系统中的超级电容器
  • 最大输出:阿利·伯克级 (USS Arleigh Burke/美国海军飞弹驱逐舰)
  • 小艇的紧急启动用超级电容器、其他

第9章 船舶用燃料电池

  • 燃料电池的种类
  • 燃料电池推进
  • PEM燃料电池
  • 生质瓦斯或电子分解
  • 操作成本:电池、燃料电池与柴油引擎

第10章 无人船的主要实例

  • 自律型船舶
  • Ocean Phoenix 360
  • Yara Birkeland:最初的自律型、零排放船舶

第11章 环境发电船的主要实例

  • 船舶用的环境发电
  • 能源独立型船舶的机会、其他

第12章 C&I用电子 & 油电混合船舶专案的125件清单

目录

Title:
Electric and Hybrid Boats and Ships 2019-2029
Ferries, Offshore Support Vessels, Tugboats, Fishing Boats, Cruise Ships, Ocean-going Trading Vessels, Recreational Boating.

By 2029 the market for electric and hybrid vessels will exceed $12 billion.

Whilst diesel and gasoline-powered vessels currently dominate maritime transportation, the market for pure electric and hybrid boats and ships is growing rapidly. The industry is facing an inflection point as vessel operators are driven by a plethora of restrictions surrounding emissions of NOx and SOx, as well as greenhouse gases such as CO2. They are also beginning to understand the value proposition of installing a system powered solely or in part by a battery, which leads to a game-changing reduction in fuel costs against a backdrop of rising oil prices.

Whereas carbon emission regulations are concerned with global warming, the concern with emissions of NOx, SOx and particulates is for local pollution and human health. Amsterdam is one city to have a policy that requires every commercial ship to be zero-emissions on its canals by 2020 or 2025, depending on its size. California has at-berth restrictions for emissions from trading vessels in the ports of Los Angles, Long Beach, Oakland, San Diego, San Francisco and Hueneme.

By volume, recreational boating represents the largest and fastest transformation. The trend for inland water vessels, and other small pleasure and leisure vessels, is that they can jump straight to pure electric versions due to the short ranges required, and potential for opportunity charging. There is also a trend towards pure electric ferries, which have very well-defined routes and predictable operation making it easy to size the battery and plan when to charge (e.g. during loading / offloading). As a result, Ferries have become a testbed for a variety of energy storage technologies, including supercapacitors and fuel cells as well as batteries.

Another area of rapid growth is Offshore Support Vessels (OSVs). According to Corvus Energy, a leading maritime battery provider, there has been a surge in demand for hybrid OSVs as batteries have been used to replace one of four diesel engines: by replacing engines, fuel savings are made by between 15 - 30 percent. In the future it is likely that all new builds of OSVs will be hybrids.

The new report on 'Electric and Hybrid Boats and Ships' provides forecasts up to 2029 broken down by vessel type (Ferry, Offshore Support Vessel, Tugboat, Fishing, Cruise, Trading) and industry segment (Recreational, Commercial, Industrial). It presents our analysis, highlights trends and gives our opinion on what's driving the transition with details based on primary research from interviews, company visits to players around the globe, and our network of contacts.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Marine segments
  • 1.2. Introduction
  • 1.3. A hundred years in the making
  • 1.4. Drivers
  • 1.5. Drivers: fuel economy
  • 1.6. Emissions reduction study
  • 1.7. Benefits of battery technology - Summary
  • 1.8. Summary of benefits
  • 1.9. Fuel cost savings and ROI
  • 1.10. Roadblocks to marine electrification
  • 1.11. Shipping emissions
  • 1.12. Forecast for electric and hybrid vessels (thousands)
  • 1.13. Forecast for electric and hybrid vessels ($ billion)
  • 1.14. Forecast by electric and hybrid vessel type (ferry, tugboat, OSV, industrial / trading, cruise)
  • 1.15. Forecast numbers
  • 1.16. Assumptions and analysis
  • 1.17. Marine battery pack price forecast
  • 1.18. Corvus Energy: battery deployment by vessel type

2. MARITIME POLICY, REGULATIONS AND TARGETS

  • 2.1. Maritime regulations
  • 2.2. SOx reductions more important than NOx
  • 2.3. Annex VI
  • 2.4. Annex VI - Sulphur
  • 2.5. Low-sulphur fuel prices
  • 2.6. Annex VI - NOx
  • 2.7. Scrubbers
  • 2.8. US seeks late change to sulphur-cap fuel rules
  • 2.9. CO2 target for shipping
  • 2.10. U.S.
  • 2.11. Asia
  • 2.12. Europe: Amsterdam zero emission canals

3. RECREATIONAL BOATING AND HIGH-END LEISURE

  • 3.1. What is a recreational watercraft?
  • 3.2. Overview of motor types
  • 3.3. Recreational boat market
  • 3.4. Regional outboard sales
  • 3.5. ICOMIA Survey
  • 3.6. Electric motor technology choices
  • 3.7. Trolling motors
  • 3.8. Conventional outboard companies
  • 3.9. Outboard emissions
  • 3.10. Torqeedo
  • 3.11. Torqeedo motor range
  • 3.12. Electric outboard price
  • 3.13. Shaft power versus propulsive power
  • 3.14. Electric propeller
  • 3.15. Torqeedo storage systems
  • 3.16. Outboard-powered ferry
  • 3.17. Oceanvolt
  • 3.18. OceanVolt motors
  • 3.19. Hull efficiency zones
  • 3.20. Aquawatt
  • 3.21. Selected examples
    • 3.21.1. Aquawatt 550 Elliniko
    • 3.21.2. Duffy - 16 Sport Cat Lake Series
    • 3.21.3. Savannah - superyacht
    • 3.21.4. 006 Yacht
    • 3.21.5. Hybrid-electric Tag 60 yacht

4. COMMERCIAL (NON-TRADING)

  • 4.1.1. Navigating shipping terms
  • 4.1.2. Electric and hybrid vessel configurations
  • 4.1.3. Hybrid battery propulsion
  • 4.1.4. Efficient hybrid battery propulsion
  • 4.1.5. Battery propulsion
  • 4.1.6. Low load is inefficient
  • 4.1.7. Fuel efficiency calculation
  • 4.1.8. Wartsila: hybrid engine profile
  • 4.2. Offshore support vessels
    • 4.2.1. Types of offshore support vessels
    • 4.2.2. The uses of offshore support vessels
    • 4.2.3. OSV: the global fleet
    • 4.2.4. Offshore support vessel oversupply
    • 4.2.5. The spike for hybrid OSVs
    • 4.2.6. In the news
  • 4.3. Tugboats
    • 4.3.1. Tugboat definition and market size
    • 4.3.2. Electric tugboat projects tracked by IDTechEx
    • 4.3.3. Kotug and Corvus Energy
    • 4.3.4. Tugboat operational profile
  • 4.4. Fishing
    • 4.4.1. High-seas fishing
    • 4.4.2. Fishing in Europe
    • 4.4.3. Fishing relies on subsidies
    • 4.4.4. Leo Greentier Marines: electric fishing boats in Asia
    • 4.4.5. Leo Greetier Marines
    • 4.4.6. Cutting Norway's Emissions with Electric Fishing Boats
  • 4.5. Ferries
    • 4.5.1. Ferries, the addressable market
    • 4.5.2. Electric and hybrid ferries: regional market share
    • 4.5.3. Short routes
    • 4.5.4. Ferries in Norway
    • 4.5.5. Fuel economy for electric ferries
    • 4.5.6. Scandlines
    • 4.5.7. Scandlines timeline for electrification
    • 4.5.8. Scandlines battery price
    • 4.5.9. Scandlines Hybrid Ferry Inverter
  • 4.6. Selected examples of e-ferry projects
    • 4.6.1. Leclanché e-ferry
    • 4.6.2. Supercapacitor ferry
    • 4.6.3. The Prius of the Sea - battery hybrid ferry
    • 4.6.4. Ampere
    • 4.6.5. Corvus Energy Case Study in Norway
    • 4.6.6. Green City Ferries: Innovation on Swedish waterways
    • 4.6.7. Ferry Conversion: M/S Prinsesse Benedikte
    • 4.6.8. HH Ferries Group conversion

5. INDUSTRIAL (TRADING)

  • 5.1.1. Seaborne trade and the global economy
  • 5.1.2. Global economy and demand for shipping
  • 5.1.3. Shipbuilding is cycle
  • 5.1.4. Trading vessel fleet
  • 5.1.5. Shipbuilding by country 2017
  • 5.1.6. Hyundai Heavy Industries
  • 5.1.7. Hyundai Heavy partners with Magna E-Car
  • 5.1.8. Ship pricing
  • 5.1.9. Electric and hybrid trading vessels
  • 5.2. Selected examples
    • 5.2.1. First electric tanker - moving beyond ferries
    • 5.2.2. First pure electric container ship
    • 5.2.3. 6.7MWh pure electric barges?

6. PROPULSION TECHNOLOGY

  • 6.1. Which technologies are adopted?
  • 6.2. Diesel
  • 6.3. Diesel-electric or hybrid propulsion
  • 6.4. Gas turbine
  • 6.5. Water-jet propulsion
  • 6.6. Gas fuel or tri-fuel propulsion
  • 6.7. Steam turbine
  • 6.8. Biofuel
  • 6.9. Wind
  • 6.10. Norsepower Rotor Sail Specification
  • 6.11. Solar Propulsion

7. OVERVIEW OF BATTERY TECHNOLOGIES

  • 7.1. Why are marine batteries different?
  • 7.2. DNG.VL Type approval
  • 7.3. Safety - pause for thought?
  • 7.4. Thermal runaway
  • 7.5. Orca ESS
  • 7.6. Battery types: lead-acid and leapfrogging NiMH
  • 7.7. The Li-ion advantage
  • 7.8. Comparison of specific energy and energy density of various battery systems
  • 7.9. What is a Li-ion battery (LIB)?
  • 7.10. A family tree of batteries - lithium-based
  • 7.11. Standard cathode materials
  • 7.12. Conventional versus advanced Li-ion?
  • 7.13. Li-ion battery cathodes
  • 7.14. Cathode alternatives - NCA
  • 7.15. Li-ion battery cathode recap
  • 7.16. LTO anode -- Toshiba
  • 7.17. Commercial battery packaging technologies
  • 7.18. Battery packaging technologies
  • 7.19. Differences between cell, module, and pack
  • 7.20. Strings
  • 7.21. ESS in shipping containers
  • 7.22. LIB manufacturing system - from cell to module
  • 7.23. Cooling systems for LIB
  • 7.24. Current challenges facing Li-ion batteries
  • 7.25. Li-ion challenges
  • 7.26. Key marine battery suppliers
  • 7.27. ESS company market share
  • 7.28. Battery Chemistry Market Share
  • 7.29. Marine battery pack price forecast
  • 7.30. Corvus Energy
  • 7.31. Corvus Energy Orca ESS
  • 7.32. Second life marine batteries?
  • 7.33. Corvus Energy: progress and projects by vessel type
  • 7.34. Spear Power Systems
  • 7.35. Spear Power Systems: choosing the right battery
  • 7.36. Akasol
  • 7.37. Leclanché
  • 7.38. Leclanché: LTO Rack
  • 7.39. Leclanché: NMC Rack
  • 7.40. Xalt Energy - marine storage systems
  • 7.41. Case study: XALT's ESS for a Platform Supply Vessel (PSV)
  • 7.42. Saft: Seanergy
  • 7.43. Saft projects in France
  • 7.44. Lithium Werks
  • 7.45. Valence
  • 7.46. Valence product range
  • 7.47. Valence Technology
  • 7.48. Rolls-Royce launches new battery system to electrify ships
  • 7.49. Prime Energy Systems: Diversifying into Marine
  • 7.50. Danfoss Motor
  • 7.51. Vebrat

8. SUPERCAPACITORS FOR MARINE APPLICATIONS

  • 8.1. What is a supercapacitor?
  • 8.2. Relative supercapacitor performance
  • 8.3. Supercapacitors in shipboard power systems
  • 8.4. Peak Power USS Arleigh Burke
  • 8.5. Supercapacitors for emergency start in boats
  • 8.6. Fuel cells and supercapacitors in vessels
  • 8.7. Supercapacitor replaces battery across fuel cell
  • 8.8. Lithium-ion capacitor performance in context
  • 8.9. World's first supercapacitor passenger vessel
  • 8.10. Supercapacitor ferry

9. FUEL CELLS FOR MARINE APPLICATIONS

  • 9.1. Types of fuel cell
  • 9.2. Fuel Cell Propulsion
  • 9.3. PEM Fuel Cell
  • 9.4. Biogas or electrolysis?
  • 9.5. Operational cost: battery, fuel cell and diesel engine
  • 9.6. Echandia Marine: the fastest fuel cell ferry
  • 9.7. Fuel cells for long range
  • 9.8. Redrock power systems
  • 9.9. Metacon: hydrogen from biogas
  • 9.10. ABB: fuel cell systems for shipping
  • 9.11. Fuel cell - battery hybrid?
  • 9.12. The SchIBZ - Ship integration of fuel cells
  • 9.13. Application of the SchIBZ system
  • 9.14. Hydrogenesis - the UK's first hydrogen fuelled ferry
  • 9.15. Hydrogenesis
  • 9.16. Fuel cells: a futuristic technology
  • 9.17. Hydrogen future?

10. SELECTED EXAMPLES OF AUTONOMOUS VESSELS

  • 10.1. Autonomous marine vehicles
  • 10.2. Ocean Phoenix 360
  • 10.3. Yara Birkeland - first autonomous and zero emissions ship

11. SELECTED EXAMPLES OF ENERGY HARVESTING VESSELS

  • 11.1. Energy harvesting for boats and ships
  • 11.2. Energy independent ship opportunity
  • 11.3. OceanVolt motors
  • 11.4. Turanor PlanetSolar
  • 11.5. Multiple energy harvesting coming in 'Glider' AUV surfaces
  • 11.6. Liquid Robotics U.S.

12. LIST OF 125 C&I ELECTRIC AND HYBRID VESSEL PROJECTS TRACKED BY IDTECHEX

  • 12.1. Navigating the list