Cover Image
市场调查报告书

环境气体感测器 空气品质感应器

Environmental Gas Sensors 2018-2028

出版商 IDTechEx Ltd. 商品编码 387389
出版日期 内容信息 英文 164 Slides
商品交期: 最快1-2个工作天内
价格
Back to Top
环境气体感测器 空气品质感应器 Environmental Gas Sensors 2018-2028
出版日期: 2018年05月11日 内容信息: 英文 164 Slides
简介

气体传感器在传统上向来仅用于工业泄漏检测和家用一氧化碳警报器,但化学气体传感器行业上小型化和降低成本的趋势却实现了新的环境监测生态系统。其市场规模预测在2014年为3亿6100万美元,2022年24亿美元,并且到2027年将超过30亿美元。

本报告涵括构成气体感测器生态系统之广泛技术,提供您6个市场区隔 (行动装置,穿戴式,空气品质 (IAQ) 、空气清净机,汽车,智能城市)的分析与预测。

第1章 摘要整理

第2章 简介

第3章 污染感测技术

  • 目前污染监测设备花费高昂
  • 气体感测器提供替代选择
  • 感测器产业
  • 化学感测器的历史
  • 可侦测空气污染物的浓度、其他

第4章 气体感测器的小型化

  • 小型感测器:市场上转换点
  • 使用MEMS制造业制造感测器
  • 扁平型电化学感测器、其他

第5章 环境感测器市场竞争分析

  • 气体感测器的价值链
  • 气体感测器制造商清单
  • 气体感测器产业上近几年的收购、其他

第6章 行动装置的感测器

  • 行动装置产业
  • 针对行动装置的检测原理
  • 集成感测器到智能型手机的课题
  • 行动装置部门的未来市场机会

第7章 穿戴式的感测器

  • 穿戴式技术产业
  • 手环上的感测器集成
  • 穿戴式感测器的技术要件
  • 成为模组化腕带一部分的穿戴式感测器、其他

第8章 室内空气品质 (IAQ) 检测用感测器

  • 室内空气品质 (IAQ)
  • 室内污染物质的原来
  • 决策上CO2暴露的影响
  • Home-Office监测:连网型环境、其他

第9章 空气清净机的感测器

  • 全球空气清净机市场
  • 空气清净方法
  • 空气清净机用微小检测原理
  • 室内空气品质 (IAQ) 的课题

第10章 汽车的感测器

  • 汽车污染:全球蔓延
  • 保护乘客的空气品质感测器
  • 汽车气体感测的课题
  • 汽车气体感测器的未来机会

第11章 智能城市的感测器

  • 智能城市的简介
  • 固定 vs. 行动感测网路
  • 个人 vs. 私人网路
  • 目前城市规模的污染监测计划
  • 目前智能城市大气监测计划、其他

第12章 其他应用

  • 终端型环境屏幕
  • AirCasting (空气品质监测应用程序)

第13章 市场预测

  • 预测详细内容·前提条件
  • 各市场的明细
  • 市场预测:出货量
  • 市场预测:收益
  • 出货量预测:检测原理别
  • 收益预测:检测原理别
  • 行动装置的感测器:各数量
  • 行动装置的感测器:各收益
  • 穿戴式的感测器:各数量
  • 穿戴式的感测器:各收益
  • 空气品质屏幕的感测器:各数量
  • 空气品质屏幕的感测器:各收益
  • 空气清净机的感测器:各数量
  • 空气清净机的感测器:各收益
  • 智能城市感测器:各数量
  • 智能城市感测器:各收益
  • 汽车感测器:各数量
  • 汽车感测器:各收益
  • 其他应用:各数量
  • 其他应用:各收益
  • 结论

第14章 企业简介

本网页内容可能与最新版本有所差异。详细情况请与我们联系。

目录

The market for gas sensor will reach $3,100 million by 2028.

Poor air quality causes more deaths annually than HIV/AIDS and malaria combined. A lack of low cost environmental monitoring equipment prevents individuals from taking action to improve air quality. Currently environmental monitoring methods are expensive and provide low spatial coverage, making their usefulness to individuals limited.

Sensors are based on tried and tested technology, new methods of manufacture are enabling smaller, lower power and more selective sensors. This has led to a tipping point in the industry, enabling the integration of sensors into low cost devices and into everyday consumer electronics such as mobile phones and wearable devices. In the future, a range of detection principles will be used to assess the wide range of pollutants in the environment. By 2028, more than 700 million sensors will be used in mobile phones.

At the same time, sensors will play a key role in IoT development and will be used extensively in smart home and smart city programmes. Heating, ventilation and air conditioning (HVAC) systems, air purifiers, smart windows and other applications will employ sensors to improve the quality of life of individuals across the world. We expect a growing market for gas sensors used in smart homes and smart cities.

In this report, we forecast the market for environmental gas sensors from 2018 to 2028. The atmospheric pollutants under examination include CO2, volatile organic compounds, NOx, Ammonia, SO2 and CO. Many pollutants exist at similar concentrations in the region of parts per billion (ppb). Consequently, there is a greater need for selective sensors in environmental monitoring. Another main focus is the particle pollutant of micron size, as the concern of smog is growing.

This report covers biosensors based on techniques of:

  • Pellistor gas sensor
  • Infrared gas sensor
  • metal oxide semiconductor (MOS) gas sensor
  • electrochemical gas sensor
  • and optical particle monitor (OPM) gas sensor

These techniques were compared with the traditional methods such as ultraviolet adsorption or filter dynamics measurement system. Gas sensors present an opportunity to attain good spatial coverage on environmental information, unobtainable with traditional monitoring methods. Microelectromechanical systems and screen printing techniques open the door to miniaturising these sensors, which is the key for the future use of these gas sensors

The market forecast is based on six major market segments:

  • automotive
  • air purifier
  • smart devices (mobile)
  • smart home
  • smart city
  • and wearables.

The environmental sensor market is currently dominated by the automotive industry, where sensors are used to automate air flow into the drivers' compartment. Over the coming years, IDTechEx expect to see large increases in sales across several new markets, primarily to the mobile device and air purifier industries.

We provide a list of main manufacturers of gas sensors, and a SWOT analysis of ten. We also give a comprehensive study on current available devices that using gas sensor to monitor environment, including sensors in mobile devices, wearable, air purifiers, automobiles, smart cities and to measure indoor air quality.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. New technology is unlocking the market
  • 1.2. Major market segments
  • 1.3. Key players in each sensor type
  • 1.4. Trends by detection principles

2. INTRODUCTION

  • 2.1. The global challenge of air pollution
  • 2.2. Effects of outdoor air pollution
  • 2.3. Indoor air pollution is also an issue
  • 2.4. The seven most common atmospheric pollutants
  • 2.5. International air quality standards
  • 2.6. Need for environmental monitoring
  • 2.7. Types of environmental sampling
  • 2.8. Potential uses for low cost air quality monitors

3. TECHNOLOGIES FOR POLLUTION SENSING

  • 3.1. Current pollution monitoring instruments are costly
  • 3.2. Gas sensors offer an alternative
  • 3.3. Sensor industry
  • 3.4. History of chemical sensors
  • 3.5. Concentrations of detectable atmospheric pollutants
  • 3.6. Environmental sensing in industrial facilities
  • 3.7. Five common detection principles for gas sensors
  • 3.8. Introduction to pellistor gas sensors
  • 3.9. Introduction to infrared gas sensors
  • 3.10. Introduction to metal oxide (MOS) gas sensors
  • 3.11. Introduction to electrochemical gas sensors
  • 3.12. Introduction to optical particle detection
  • 3.13. Current research in gas sensors: carbon nanotubes
  • 3.14. Current research in gas sensors: zeolites
  • 3.15. Current research in gas sensors: graphene
  • 3.16. Transition to new manufacturing methods
  • 3.17. Energy harvesting technologies for gas sensors
  • 3.18. Sensors in comparison with traditional equipment
  • 3.19. Limitations of gas sensing devices

4. MINIATURIZATION OF GAS SENSORS

  • 4.1. Miniaturized sensors: a tipping point in the market
  • 4.2. Sensor fabrication using MEMS manufacturing
  • 4.3. Flat electrochemical sensors
  • 4.4. Comparison between classic and miniaturised sensors
  • 4.5. Miniaturisation of pellistor gas sensors
  • 4.6. Miniaturisation of infrared gas sensor
  • 4.7. Miniaturisation of electrochemical gas sensors
  • 4.8. Miniaturisation of MOS gas sensors
  • 4.9. Comparison of miniaturised sensor technology

5. COMPETITIVE ANALYSIS OF THE ENVIRONMENTAL SENSOR MARKET

  • 5.1. The gas sensor value chain
  • 5.2. List of gas sensor manufacturers
  • 5.3. Recent acquisitions in the gas sensor industry
  • 5.4. Sensor manufacturer business models
  • 5.5. Porters' five force analysis of industry
  • 5.6. Quality assurance for environmental monitoring equipment
  • 5.7. SWOT analysis of 10 manufacturers
  • 5.8. Future challenges for sensor manufacturers

6. SENSORS IN MOBILE DEVICES

  • 6.1. The mobile device industry
  • 6.2. Suitable detection principles for mobile devices
  • 6.3. Consumer interface for gas sensing data
  • 6.4. Challenges for sensor integration into smartphones
  • 6.5. Future market opportunities in the mobile device sector

7. SENSORS IN WEARABLES

  • 7.1. The wearable technology industry
  • 7.2. Sensor integration in wrist wear
  • 7.3. Technology requirements of wearable sensors
  • 7.4. Wearable sensors as part of modular wrist straps
  • 7.5. Environmental sensor integration in fashion accessories
  • 7.6. Future opportunities for wearable sensors

8. SENSORS TO MEASURE INDOOR AIR QUALITY

  • 8.1. Indoor air quality
  • 8.2. Sources of indoor air pollutants
  • 8.3. Effects of CO2 exposure on decision making
  • 8.4. Home and office monitoring: a connected environment
  • 8.5. Current smart home monitoring vendors
  • 8.6. Sensors to direct HVAC systems
  • 8.7. HVAC systems in buildings
  • 8.8. Future opportunities for IAQ monitoring
  • 8.9. Challenges for indoor air quality measurement

9. SENSORS IN AIR PURIFIERS

  • 9.1. The global air purifier market
  • 9.2. Methods of air purification
  • 9.3. Suitable miniaturised detection principles for air purifiers
  • 9.4. Challenges in indoor air quality monitoring

10. SENSORS IN AUTOMOBILES

  • 10.1. Automobile pollution: a global epidemic
  • 10.2. Air quality sensors safeguarding passengers
  • 10.3. Car mounted sensors monitoring air pollution in Mexico City
  • 10.4. Challenges for automobile gas sensing
  • 10.5. Future opportunities for automobile gas sensors

11. SENSORS IN SMART CITIES

  • 11.1. Introduction to smart cities
  • 11.2. Fixed vs mobile sensing networks
  • 11.3. Personal vs private networks
  • 11.4. Current city wide pollution monitoring programmes
  • 11.5. Current smart city air monitoring projects
  • 11.6. Calculated air quality measurements
  • 11.7. Transport based sensing of environmental pollutants
  • 11.8. Airborne pollution sensing
  • 11.9. Mobile monitoring: sensors on bicycles
  • 11.10. Traffic monitoring with gas sensors
  • 11.11. Array of things project - Chicago
  • 11.12. Anatomy of an outdoor sensor node
  • 11.13. Challenges for smart city monitoring
  • 11.14. Future opportunities for environmental sensors in smart cities

12. OTHER APPLICATIONS

  • 12.1. Handheld environmental monitors
  • 12.2. Aircasting

13. MARKET FORECASTS

  • 13.1. Forecast details and assumptions
  • 13.2. Breakdown by market
  • 13.3. Market forecast: unit sales
  • 13.4. Market forecast: market value
  • 13.5. Unit sales forecast by detection principle
  • 13.6. Market value forecast by detection principle
  • 13.7. Sensors in smart devices by volume
  • 13.8. Sensors in smart devices by revenue
  • 13.9. Sensors in wearables by volume
  • 13.10. Sensors in wearables by revenue
  • 13.11. Sensors in air purifier by volume
  • 13.12. Sensors in air purifier by revenue
  • 13.13. Sensors in smart city by volume
  • 13.14. Sensors in smart city by revenue
  • 13.15. Sensors in smart home by volume
  • 13.16. Sensors in smart home by revenue
  • 13.17. Sensors in automotive by volume
  • 13.18. Sensors in automotive by revenue
  • 13.19. Other applications by volume
  • 13.20. Other application by revenue
  • 13.21. Conclusions

14. COMPANY PROFILES

Back to Top