表纸
市场调查报告书
商品编码
1037303

2022-2042年锂离子电池回收市场

Li-ion Battery Recycling Market 2022-2042

出版日期: | 出版商: IDTechEx Ltd. | 英文 335 Slides | 商品交期: 最快1-2个工作天内

价格
  • 全貌
  • 简介
  • 目录
简介

标题
2022-2042 年锂离子电池回收市场
全球锂离子电池回收市场分析,包括来自电动汽车、消费电子产品、制造废料和固定储能的锂离子电池的技术、政策、经济和 20 年回收预测。

"2042 年将有 1200 万吨锂离子电池被回收,市场复合年增长率为 22%。"

锂离子电池在电动汽车 (EV) 市场占据主导地位,是消费电子产品日常生活的一部分,并将在固定能源存储中盛行。然而,锂离子电池的可持续性取决于其整个生命周期,包括生命周期结束管理。此外,人们越来越担心钴等原材料供应。回收可以恢复电池金属的内含价值,以创造额外收入和循环供应链,从而免受电池材料商品价格波动的影响。整个锂离子电池供应链的利益相关者都认识到回收的潜力,预计未来二十年锂离子电池回收市场将蓬勃发展。2042 年,将回收 1200 万吨锂离子电池,获得 510 亿美元的有价金属。

在过去的一年里,随著公司准备大量供应废旧锂离子电池,人们对锂离子电池回收市场的兴趣和投资加速。目前,大部分来自消费电子产品(例如笔记本电脑和手机)从未被回收。电动汽车电池的收集网络更容易建立,因为当它们不能再用于车辆时,它们需要由专业人员处理。在许多国家/地区,生产者责任延伸 (EPR) 要求原始设备制造商 (OEM) 照顾报废电池。随著电动汽车电池在未来几十年开始达到使用寿命,我们将看到可供回收的退役电动汽车电池呈指数级增长,从而主导市场,带来巨大的价值机会。

样本视图

来源:IDTechEx

该报告对锂离子电池回收市场的现状进行了深入分析,包括对全球技术和政策的深入分析。虽然在中国有明显的优势,但由于早期制定了特定的锂离子电池管理政策,欧洲和北美正在迎头赶上。在对全球超过 85 家锂离子电池回收商的数据进行分析后,IDTechEx 报告了这些地区计划于 2022/2023 年开始运营的多个商业规模回收工厂。除了最新的机械、水力和火法冶金工艺描述外,该报告还分析了直接回收的发展。虽然目前处于商业前阶段,但直接回收提供了一种有前途的技术,可以重振用过的阴极,并有可能回收其他电池组件,例如阳极和箔,具有很高的环境效益。随著市场的成熟和经济寻求先进的循环,直接回收可能在商业上变得可行。

我们发现,要有效回收锂离子电池,需要解决几个关键问题。电池收集是有效回收锂离子电池的最重要先决条件之一。如果没有有效的电池收集网络,要回收的电池数量少或收集成本高可能会损害回收的经济性。另一个挑战是缺乏回收设计,这使得电池拆卸和分类既昂贵又耗时。虽然电动汽车电池更容易收集和庞大的规模提供了巨大的机会,但也带来了各种技术和经济挑战。电动汽车电池组的众多设计和高电压意味著安全拆卸仍将是一个复杂且耗时的阶段。此外,与消费电子电池相比,电动汽车电池的每千瓦时价值会更低,这意味著回收商如果想在回收过程中实现收支平衡,就必须以更高的纯度和效率提取更多材料。

关于报废 EV 电池的另一个热门讨论是,它们是否应该被回收以获取原材料,或者是否应该重新用于替代应用(如固定储能)中的第二次使用。无论退役的电动汽车电池是否被重新利用,它们最终都需要被回收利用。从理论上讲,回收是循环经济中最不可持续的措施,应该是电池无法再使用时的最后一步。然而,在实践中,要考虑更多的因素。从技术上讲,重新利用废弃电动汽车电池的第二次生命不应对其回收能力产生任何影响——它会延迟回收过程,从而对回收的物流和经济产生影响。在本报告中,我们讨论了锂离子电池回收的经济性以及可能影响其价值的关键因素。

样本视图

来源:IDTechEx

这份 IDTechEx 报告提供了 2020 年至 2042 年期间锂离子电池回收市场的二十年市场预测,包括数量和市场价值。这些预测按地区、正极化学、锂离子电池行业(消费电子产品、固定能源存储、制造废料和电动汽车)以及关键金属(锂、钴、镍、锰、铜和铝)的恢复进行细分。电动汽车分为电动汽车、轻型商用车、中重型卡车、公共汽车和两轮车(踏板车和摩托车)。数据以 GWh、ktonnes 和 10 亿美元为单位,并对回收率进行了自下而上的分析。

本报告的关键要点:

  • 锂离子电池市场概况
  • 当前锂离子电池回收市场格局
  • 综合分析和回收过程和技术的例子
  • 全球锂离子电池回收法规和政策
  • 锂离子电池回收价值链与经济分析
  • 详细的 20 年锂离子电池回收市场数量和市场预测;主要地区、部门、正极化学品和主要回收金属提供了颗粒状市场预测。

来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师进行长达 30 分钟的电话通话,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要

  • 1.1. 回收锂离子电池的驱动程序
  • 1.2. LIB 回收方法概述
  • 1.3. 火法冶金回收
  • 1.4. 湿法冶金回收
  • 1.5。直接回收
  • 1.6. 回收技术比较
  • 1.7. 电动汽车电池回收价值链
  • 1.8. 锂离子电池什么时候回收?
  • 1.9. 回收还是第二次生命?
  • 1.10. 回收锂离子电池经济吗?
  • 1.11. 锂离子电池回收的经济性分析
  • 1.12. 阴极化学对循环经济的影响
  • 1.13. 部门参与
  • 1.14. 回收市场
  • 1.15。计划的商业工厂
  • 1.16。2020-2042 年全球锂离子电池回收市场:按地区(GWh)
  • 1.17. 2020-2042 年全球锂离子电池回收市场:按地区 (GWh) - 总结
  • 1.18. 2020-2042 年全球锂离子电池回收市场:按地区(千吨)
  • 1.19. 2020-2042 年全球锂离子电池回收市场:按地区(千吨)-总结
  • 1.20。2020-2042 年全球锂离子电池回收市场:按化学分类(千吨)
  • 1.21. 2020-2042 年全球锂离子电池回收市场:按化学分类(千吨)-总结
  • 1.22。2020-2042 年全球锂离子电池回收金属(千吨)
  • 1.23。2020-2042 年全球锂离子电池回收金属(千吨) - 摘要
  • 1.24。2020-2042 年全球锂离子电池回收市场价值(十亿美元)
  • 1.25。2020-2042 年全球锂离子电池回收市场价值(十亿美元)——总结

2. 简介和锂离子电池市场概览

  • 2.1. 什么是锂离子电池?
  • 2.2. 锂离子正极概述
  • 2.3. 锂离子阳极概述
  • 2.4. 循环寿命和寿命终止
  • 2.5. 电池为什么会坏?
  • 2.6. 锂离子降解复杂度
  • 2.7. 报废锂离子电池会发生什么
  • 2.8. 锂离子电池什么时候回收?
  • 2.9. 锂离子供应链
  • 2.10. 对锂离子电池的需求
  • 2.11. 市场概况
  • 2.12. 高镍阴极驱动器
  • 2.13. 矽阳极 - 合并、收购和投资
  • 2.14. 电池正极技术趋势
  • 2.15。负极及锂离子以外的电池技术趋势
  • 2.16. 锂离子电池中使用的元素
  • 2.17. 供需概览
  • 2.18. 原材料短缺的可能性
  • 2.19. 电动汽车的碳排放
  • 2.20. 锂离子材料的可持续性
  • 2.21. 可疑的采矿实践
  • 2.22. 驱动程序和约束

3. 回收法规和政策

  • 3.1. 循环经济
  • 3.2. 回收监管的好处
  • 3.3. 生产者责任延伸
  • 3.4. 中国正在为电动汽车电池回收做准备
  • 3.5。中国法规概览
  • 3.6. 中国的政策框架
  • 3.7. 中国电动汽车电池追溯管理系统
  • 3.8. 电池回收追溯管理平台
  • 3.9. 中国政策框架的弊端
  • 3.10. 韩国和日本
  • 3.11. 印度
  • 3.12. 欧盟关键原材料
  • 3.13. 欧盟电池指令 2006/66/EC
  • 3.14. 欧盟电池指令 2018 修正案
  • 3.15。关于电池和废电池的欧盟法规提案
  • 3.16. 欧洲电池联盟
  • 3.17. 在英国建立政策框架
  • 3.18. 英国电池回收行业
  • 3.19. 美国关键矿产法
  • 3.20。美国政策
  • 3.21. 国家锂电池蓝图(美国)
  • 3.22. 美国锂离子电池回收激励和税收减免示例
  • 3.23. 澳大利亚
  • 3.24。澳大利亚 - 电池管理计划
  • 3.25。运输
  • 3.26。政策的意外后果
  • 3.27。政策摘要
  • 3.28。新/即将出台的政策摘要

4. 锂离子回收工艺和技术

  • 4.1.1. 回收历史 - 铅酸
  • 4.1.2. 铅酸电池
  • 4.1.3. 铅酸与锂离子成本细分
  • 4.1.4. 需要吸取的教训
  • 4.1.5. 回收鹼性电池
  • 4.1.6. 回收锂离子电池的驱动程序 1
  • 4.1.7。回收锂离子电池的驱动程序 2
  • 4.1.8。回收锂离子电池的限制
  • 4.1.9。LIB回收过程概述
  • 4.1.10。回收原料流
  • 4.1.11。LIB 回收方法概述
  • 4.1.12。LIB 回收方法概述
  • 4.1.13。回收能力
  • 4.1.14。是否有足够的全球资源?
  • 4.1.15。材料内容
  • 4.1.16。BEV锂离子回收质量流量
  • 4.2. 机械加工
    • 4.2.1. 回收不同的锂离子电池
    • 4.2.2. 回收不同的锂离子电池
    • 4.2.3. 缺乏包装标准化
    • 4.2.4. EV LIB放电拆解
    • 4.2.5. 锂电池拆解
    • 4.2.6. 机械加工分离
    • 4.2.7. 机械加工分离工艺实例
    • 4.2.8. 回收预处理和加工
    • 4.2.9. 过筛
    • 4.2.10。重力分离/涡流分离
    • 4.2.11。泡沫浮选
    • 4.2.12。机械分离流程图
    • 4.2.13。Recupyl 机械分离流程图
    • 4.2.14。TES-AMM黑体工艺
  • 4.3. 火法冶金
    • 4.3.1. 火法冶金回收
    • 4.3.2. 火法冶金回收
    • 4.3.3. 火法冶金回收的优势/劣势
    • 4.3.4. 优美科回收流程图
  • 4.4. 湿法冶金和材料回收
    • 4.4.1. 湿法冶金回收
    • 4.4.2. 湿法冶金回收的优势/劣势
    • 4.4.3. 通过湿法冶金的回收示例
    • 4.4.4. Recupyl 回收流程图
    • 4.4.5. TES-AMM湿法冶金工艺流程图
    • 4.4.6. 电冶金
    • 4.4.7。溶剂萃取
    • 4.4.8. 沉淀
    • 4.4.9。锂离子回收的机会
  • 4.5。直接回收
    • 4.5.1. 直接回收工艺开发
    • 4.5.2. 直接回收的优势/劣势
    • 4.5.3. 湿法冶金-直接混合回收
    • 4.5.4。细胞中心
    • 4.5.5。预处理
    • 4.5.6。电解质分离
    • 4.5.7。阴极-阴极和阴极-阳极分离
    • 4.5.8。粘合剂去除
    • 4.5.9。再锂化
    • 4.5.10。固态和电化学再锂化
    • 4.5.11。OnTo技术
    • 4.5.12。阴极修复TM(水热)
    • 4.5.13。阴极恢复和再生
    • 4.5.14。固态与阴极愈合
    • 4.5.15。升级改造
    • 4.5.16。直接回收制造废料
    • 4.5.17。成本和生命周期分析
  • 4.6. 回收技术结论
    • 4.6.1. 锂离子回收的趋势
    • 4.6.2. 回收方法图
    • 4.6.3. 锂离子生产链/回路
    • 4.6.4. 为回收而设计
    • 4.6.5。回收技术结论
    • 4.6.6。回收技术比较
    • 4.6.7。学术研究
    • 4.6.8。各地区学术研究

5. 锂离子电池回收的价值炼和商业模式

  • 5.1. 为什么锂离子电池会失效?
  • 5.2. 报废锂离子电池会发生什么
  • 5.3. 锂离子电池回收价值链概述
  • 5.4. 电动汽车电池闭环价值链
  • 5.5。电动汽车电池回收价值链
  • 5.6. 电动汽车电池回收价值链全生命周期觀
  • 5.7. 锂离子电池什么时候回收?
  • 5.8. 回收锂离子电池经济吗?
  • 5.9. 电池回收的经济性分析
  • 5.10. 电池化学对循环经济的影响
  • 5.11. 阴极化学回收价值
  • 5.12. 回收还是第二次生命?
  • 5.13. 回收或第二次生命:技术经济分析(1)
  • 5.14. 回收或第二次生命:技术经济分析 (2)
  • 5.15。回收或第二次生命:补充信息
  • 5.16. 回收对锂离子电池成本降低的影响
  • 5.17。退役的锂离子电池去哪儿了?
  • 5.18. 逆向物流:锂离子电池收集
  • 5.19. 中国电动汽车电池收集网络案例研究
  • 5.20。电池分类拆解
  • 5.21. 回收设计
  • 5.22. 结束语

6. 回收市场概览

  • 6.1. LIB回收市场
  • 6.2. 对整个价值链回收的兴趣
  • 6.3. 锂离子回收公司的位置
  • 6.4. 欧洲回收
  • 6.5。欧洲回收
  • 6.6. 亚太地区(不包括中国)回收
  • 6.7. 在中国回收
  • 6.8. 北美回收
  • 6.9. 部门参与
  • 6.10. 回收商业化阶段
  • 6.11. 回收技术分解
  • 6.12. 回收参与者的状态
  • 6.13. 计划的商业工厂
  • 6.14. 全球回收能力
  • 6.15。结论

7. 公司简介

  • 7.1.1. 包括的公司名单
  • 7.2. 汽车原始设备制造商
    • 7.2.1. 宝马在电动汽车电池回收方面的战略合作伙伴关系
    • 7.2.2. 雷诺对锂离子电池的循环经济努力
    • 7.2.3. 大众汽车计划使用退役的电动汽车电池
    • 7.2.4. 大众汽车的内部锂离子电池回收厂
    • 7.2.5. 特斯拉的 "圆形超级工厂"
  • 7.3. 欧洲
    • 7.3.1. 准确度
    • 7.3.2. 阿库瑟公司
    • 7.3.3. 巴斯夫
    • 7.3.4. 巴特雷克
    • 7.3.5. 迪森费尔德
    • 7.3.6. Duesenfeld 工艺概述
    • 7.3.7。富腾
    • 7.3.8。Fortum 收购 Crisolteq
    • 7.3.9。Fortum 加强与巴斯夫和 Nornickel 的合作
    • 7.3.10。Fortum - 进一步更新
    • 7.3.11。嘉能可 Nikkelverk
    • 7.3.12。Inobat 将回收和采矿与力拓相结合
    • 7.3.13。Nickelhutte Aue
    • 7.3.14。Northvolt 的 Revolt 回收计划
    • 7.3.15。北伏特
    • 7.3.16。ReLieVe 项目(Suez、Eramet 和 BASF)
    • 7.3.17。Stena 回收 AB
    • 7.3.18。优美科
  • 7.4. 亚洲
    • 7.4.1. 4R能源
    • 7.4.2. 4R Energy 的浪江工厂
    • 7.4.3. 安华泰森
    • 7.4.4. CATL和Brunp回收
    • 7.4.5。在 Brunp 回收工厂爆炸
    • 7.4.6. 同和生态系统公司
    • 7.4.7。生态专业
    • 7.4.8。贛锋锂业
    • 7.4.9。宝石
    • 7.4.10。GS E&C 参与现代,包括 SungEel HiTech
    • 7.4.11。广东光华科技
    • 7.4.12。合肥国轩高科(Gotion)
    • 7.4.13。JX日本金属矿业
    • 7.4.14。科巴尔
    • 7.4.15。共荣精工
    • 7.4.16。罗姆清洁技术
    • 7.4.17。POSCO与华友钴业合资
    • 7.4.18。住友
    • 7.4.19。住友工艺
    • 7.4.20。SungEel HiTech POSCO、三星、LG Energy Solutions
    • 7.4.21。TES-AMM (1)
    • 7.4.22。TES-AMM (2)
  • 7.5。北美
    • 7.5.1. 美国锰
    • 7.5.2. 电池资源
    • 7.5.3. 法拉西斯
    • 7.5.4。Farasis回收工艺专利
    • 7.5.5。传统电池回收和 6K
    • 7.5.6。锂电池
    • 7.5.7。Li-cycle商业模式
    • 7.5.8。Li-cycle 工艺概述
    • 7.5.9。Lithion 包括 Nouveau Monde Graphite 和 Hyundai Canada
    • 7.5.10。OnTo技术
    • 7.5.11。庄信万丰和 OnTo Technology
    • 7.5.12。雷迪维乌斯
    • 7.5.13。红木材料
    • 7.5.14。检索包括丸红株式会社和 Hobi International
  • 7.6. 世界其他地区 (RoW)
    • 7.6.1. 环境流
    • 7.6.2. 纯电池技术 (PBT)

8. 市场预测

  • 8.1. 方法论解释
  • 8.2. 假设
  • 8.3. 2020-2042 年全球锂离子电池回收市场:按地区(GWh)
  • 8.4. 2020-2042 年全球锂离子电池回收市场:按地区 (GWh) - 总结
  • 8.5。2020-2042 年全球锂离子电池回收市场:按地区(千吨)
  • 8.6. 2020-2042 年全球锂离子电池回收市场:按地区(千吨)-总结
  • 8.7. 2020-2042 年全球锂离子电池回收市场:按化学分类(千吨)
  • 8.8. 2020-2042 年全球锂离子电池回收市场:按化学分类(千吨)-总结
  • 8.9. 全球主要地区化学锂离子电池回收市场
  • 8.10. 2020-2042 年全球锂离子电池回收金属(千吨)
  • 8.11. 2020-2042 年全球锂离子电池回收金属(千吨) - 摘要
  • 8.12. 2020-2042 年全球锂离子电池回收市场价值(十亿美元)
  • 8.13. 全球锂离子电池回收市场价值份额
  • 8.14. 2020-2042 年全球锂离子电池回收市场价值(十亿美元)——总结
  • 8.15。中国
    • 8.15.1。2020-2042年中国锂离子电池回收市场:按行业(GWh)
    • 8.15.2. 2020-2042 年中国锂离子电池回收市场:按行业 (GWh) - 总结
    • 8.15.3. 2020-2042年中国锂离子电池回收市场:按行业分类(千吨)
    • 8.15.4。2020-2042年中国锂离子电池回收市场:按行业(千吨)-总结
    • 8.15.5。中国锂离子电池回收市场份额
    • 8.15.6。2020-2042年中国锂离子电池回收市场:按化学(GWh)
    • 8.15.7。2020-2042年中国锂离子电池回收市场:按化学(GWh)-总结
    • 8.15.8。2020-2042年中国锂离子电池回收市场:按化学分类(千吨)
    • 8.15.9。2020-2042年中国锂离子电池回收市场:按化学(千吨)-总结
    • 8.15.10。中国锂离子电池正极回收市场份额
    • 8.15.11。2020-2042年中国锂离子电池回收金属(千吨)
    • 8.15.12。2020-2042 年中国锂离子电池回收金属(千吨) - 总结
  • 8.16. 欧洲
    • 8.16.1。2020-2042 年欧洲锂离子电池回收市场:按行业(GWh)
    • 8.16.2. 2020-2042 年欧洲锂离子电池回收市场:按行业 (GWh) - 总结
    • 8.16.3。2020-2042 年欧洲锂离子电池回收市场:按行业分类(千吨)
    • 8.16.4。2020-2042 年欧洲锂离子电池回收市场:按行业(千吨)-总结
    • 8.16.5。欧洲各行业锂离子电池回收市场份额
    • 8.16.6。2020-2042 年欧洲锂离子电池回收市场:按化学(GWh)
    • 8.16.7。欧洲锂离子电池回收市场 2020-2042:按化学 2020-2042 (GWh) - 总结
    • 8.16.8。2020-2042 年欧洲锂离子电池回收市场:按化学分类(千吨)
    • 8.16.9。2020-2042 年欧洲锂离子电池回收市场:按化学 2020-2042 年(千吨)-总结
    • 8.16.10。2020-2042 年欧洲锂离子电池回收金属(千吨)
    • 8.16.11。2020-2042 年欧洲锂离子电池回收金属(千吨) - 摘要
  • 8.17. 北美
    • 8.17.1。2020-2042 年北美锂离子电池回收市场:按行业(GWh)
    • 8.17.2. 2020-2042 年北美锂离子电池回收市场:按行业 (GWh) - 总结
    • 8.17.3. 2020-2042 年北美锂离子电池回收市场:按行业分类(千吨)
    • 8.17.4。2020-2042 年北美锂离子电池回收市场:按行业(千吨)-总结
    • 8.17.5。北美按行业划分的锂离子电池回收市场份额
    • 8.17.6。2020-2042 年北美锂离子电池回收市场:按化学(GWh)
    • 8.17.7。2020-2042 年北美锂离子电池回收市场:按化学 (GWh) - 总结
    • 8.17.8。2020-2042 年北美锂离子电池回收市场:按化学分类(千吨)
    • 8.17.9。2020-2042 年北美锂离子电池回收市场:按化学分类(千吨)-总结
    • 8.17.10。北美 2020-2042 年锂离子电池回收金属(千吨)
    • 8.17.11。北美 2020-2042 年锂离子电池中回收的金属(千吨) - 摘要
  • 8.18. 部门细分和方法
    • 8.18.1。2020-2042 年全球锂离子电池回收市场:按行业 (GWh)
    • 8.18.2. 2020-2042 年全球消费电子产品锂离子电池回收市场:按产品 (GWh)
    • 8.18.3. 消费电子产品 - 回收率
    • 8.18.4。2028-2042 年全球固定储能锂离子电池回收市场 (GWh)
    • 8.18.5。用于固定储能的全球锂离子电池回收市场 2028-2042:按化学(GWh)
    • 8.18.6。2020-2042 年用于制造废料的全球锂离子电池回收市场:按地区 (GWh)
    • 8.18.7。2020-2042 年全球汽车 BEV 锂离子电池回收市场 (GWh)
    • 8.18.8。2020-2042 年全球汽车 BEV 锂离子电池回收市场:按化学(GWh)
    • 8.18.9。2020-2042 年全球非汽车电动汽车锂离子电池回收市场:按车型(GWh)
目录
Product Code: ISBN 9781913899806

Title:
Li-ion Battery Recycling Market 2022-2042
Global Li-ion battery recycling market analysis including technologies, policies, economics, and 20-year recycling forecasts for Li-ion batteries from electric vehicles, consumer electronics, manufacturing scrap and stationary energy storage.

"12 million tonnes of Li-ion batteries will be recycled in 2042 with the market at a CAGR of 22%."

Li-ion batteries dominate the electric vehicle (EV) market, are part of everyday life in consumer electronics, and will be prevalent in stationary energy storage. However, Li-ion battery sustainability depends on their whole lifecycle, including end-of-life management. Additionally, there are increasing concerns over raw material supplies such as cobalt. Recycling can recover the embedded value of battery metals to create extra revenues and a circular supply chain, which is shielded against the fluctuating commodity prices of battery materials. Stakeholders across the Li-ion battery supply chain are recognising the potential of recycling, and the Li-ion battery recycling market is expected to boom over the next two decades. In 2042, 12 million tonnes of Li-ion batteries will be recycled obtaining $51 billion USD in valuable metals.

The past year has seen interest and investments in the Li-ion battery recycling market accelerate as companies prepare for the mass availability of waste Li-ion batteries. At the moment, the majority come from consumer electronics (e.g. laptops and mobile phones) are never recycled. It is easier to build the collection network for EV batteries because when they can't be utilized in the vehicles anymore, they need to be handled by professionals. In many countries, the extended producer responsibility (EPR) requires the original equipment manufacturers (OEMs) to take care of retired batteries. As EV batteries are beginning to reach their end-of-life in the coming decades, we will see an exponential growth of retired EV batteries available for recycling causing them to dominate the market, bringing huge value opportunities.

SAMPLE VIEW

                  Source: IDTechEx

The report provides an in-depth analysis of the current state of the Li-ion battery recycling market, including a global technology and policy deep-dive. While there is a clear dominance in China, due to establishing specific Li-ion battery management policy early-on, Europe and North America are catching on. Following the analysis of data from over 85 Li-ion battery recyclers worldwide, IDTechEx report on multiple commercial-scale recycling plants planned across these regions to start operation in 2022/2023. In addition to up-to-date mechanical, hydro- and pyrometallurgical process descriptions, the report analyses developments in direct recycling. While currently at a pre-commercial stage, direct recycling offers a promising technology that can reinvigorate spent cathodes and has the potential to recover other battery components, such as the anode and foils, with high environmental benefits. As the market matures and economies seek advanced circularity, direct recycling could become commercially viable.

We found that several key issues need to be addressed for efficient recycling of Li-ion batteries. Battery collection is one of the most important prerequisites for efficient Li-ion battery recycling. Without an efficient battery collection network, the low volume of batteries to be recycled or high cost of collection could damage the economics of recycling. Another challenge is the lack of design for recycling that make battery disassembly and sorting costly and time-consuming. While the easier collection and sheer scale of EV batteries provides a huge opportunity it also comes with various technical and economic challenges. The numerous designs and high voltage of EV battery packs mean safe disassembly will remain a complex and time-consuming stage. Furthermore, the $/kWh value embedded within EV batteries will be lower compared to consumer electronics batteries, meaning recyclers will have to extract more material at higher purities and efficiencies if they want to break even on their recycling process.

Another topical discussion around end-of-life EV batteries is whether they should be recycled to obtain the raw materials or repurposed for a second-life in alternative applications such as stationary energy storage. Whether retired EV batteries are repurposed or not, they will need to be recycled anyway in the end. In theory, recycling is the least sustainable measure in a circular economy and should be the last step when the batteries can't be utilised anymore. However, in practice, many more factors are considered. Technologically, repurposing a second-life for retired EV batteries should not have any effect on its ability to be recycled - it will delay the recycling process and thus have an impact on the logistics and economics of recycling. In this report, we discuss the economics of Li-ion battery recycling and the key factors that might impact its value.

SAMPLE VIEW

                  Source: IDTechEx

This IDTechEx report provides a twenty-year market forecast on the Li-ion battery recycling market for the period 2020-2042, in both volume and market value. The forecasts are broken down by region, cathode chemistry, Li-ion battery sector (consumer electronics, stationary energy storage, manufacturing scrap and EVs), and key metals (lithium, cobalt, nickel, manganese, copper, and aluminium) recovered. EVs are split into electric cars, light-commercial vehicles, medium- and heavy-duty trucks, buses, and two-wheelers (scooters and motorcycles). Data is given in GWh, ktonnes and $bn with a bottom-up analysis of recycling rates.

Key takeaways from this report:

  • Overview of Li-ion battery market
  • Current market landscape of Li-ion battery recycling
  • Comprehensive analysis and examples of recycling processes and technologies
  • Global Li-ion battery recycling regulations and policies
  • Analysis of Li-ion battery recycling value chain and economics
  • Detailed 20-year Li-ion battery recycling market forecast in both volume and market value; granular market forecasts are provided by major regions, sectors, cathode chemistries and key metals recovered.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Drivers for recycling Li-ion batteries
  • 1.2. LIB recycling approaches overview
  • 1.3. Pyrometallurgical recycling
  • 1.4. Hydrometallurgical recycling
  • 1.5. Direct recycling
  • 1.6. Recycling techniques compared
  • 1.7. EV battery recycling value chain
  • 1.8. When will Li-ion batteries be recycled?
  • 1.9. Recycling or second life?
  • 1.10. Is recycling Li-ion batteries economic?
  • 1.11. Economic analysis of Li-ion battery recycling
  • 1.12. Impact of cathode chemistries on recycling economics
  • 1.13. Sector involvement
  • 1.14. Recycling market
  • 1.15. Planned commercial plants
  • 1.16. Global Li-ion battery recycling market 2020-2042: by region (GWh)
  • 1.17. Global Li-ion battery recycling market 2020-2042: by region (GWh) - summary
  • 1.18. Global Li-ion battery recycling market 2020-2042: by region (ktonnes)
  • 1.19. Global Li-ion battery recycling market 2020-2042: by region (ktonnes) - summary
  • 1.20. Global Li-ion battery recycling market 2020-2042: by chemistry (ktonnes)
  • 1.21. Global Li-ion battery recycling market 2020-2042: by chemistry (ktonnes) - summary
  • 1.22. Global recycled metals from Li-ion batteries 2020-2042 (ktonnes)
  • 1.23. Global recycled metals from Li-ion batteries 2020-2042 (ktonnes) - summary
  • 1.24. Global Li-ion battery recycling market value 2020-2042 ($ billion USD)
  • 1.25. Global Li-ion battery recycling market value 2020-2042 ($ billion USD) - summary

2. INTRODUCTION AND LI-ION BATTERY MARKET OVERVIEW

  • 2.1. What is a Li-ion battery?
  • 2.2. Li-ion cathode overview
  • 2.3. Li-ion anode overview
  • 2.4. Cycle life and End-of-life
  • 2.5. Why batteries fail?
  • 2.6. Li-ion degradation complexity
  • 2.7. What happens to end-of-life Li-ion batteries
  • 2.8. When will Li-ion batteries be recycled?
  • 2.9. The Li-ion supply chain
  • 2.10. Demand for Li-ion shifting
  • 2.11. Market overview
  • 2.12. Drivers for High-Nickel Cathode
  • 2.13. Silicon Anodes - Mergers, Acquisitions, and Investments
  • 2.14. Battery cathode technology trends
  • 2.15. Battery technology trends in anode and beyond Li-ion
  • 2.16. The elements used in Li-ion batteries
  • 2.17. Supply and demand overview
  • 2.18. Potential for raw material shortage
  • 2.19. Carbon emissions from electric vehicles
  • 2.20. Sustainability of Li-ion materials
  • 2.21. Questionable mining practice
  • 2.22. Drivers and restraints

3. RECYCLING REGULATION AND POLICY

  • 3.1. Circular economy
  • 3.2. Benefits of recycling regulation
  • 3.3. Extended Producer Responsibility
  • 3.4. China is preparing for EV battery recycling
  • 3.5. Overview of Chinese Regulations
  • 3.6. China's Policy Framework
  • 3.7. The EV battery traceability management system in China
  • 3.8. The battery recycling and traceability management platform
  • 3.9. Drawbacks of Chinas policy framework
  • 3.10. South Korea and Japan
  • 3.11. India
  • 3.12. EU critical raw materials
  • 3.13. EU Battery Directive 2006/66/EC
  • 3.14. EU Battery Directive 2018 Amendment
  • 3.15. Proposed EU regulation concerning batteries and waste batteries
  • 3.16. European batteries Alliance
  • 3.17. Building a policy framework in the UK
  • 3.18. UK battery recycling industry
  • 3.19. US Critical Minerals Act
  • 3.20. US Policy
  • 3.21. National Blueprint for Lithium Batteries (US)
  • 3.22. US Li-ion battery recycling incentives and tax breaks examples
  • 3.23. Australia
  • 3.24. Australia - Battery Stewardship Scheme
  • 3.25. Transportation
  • 3.26. Unintended consequences of policy
  • 3.27. Policy Summary
  • 3.28. New/upcoming policy summary

4. LI-ION RECYCLING PROCESSES AND TECHNOLOGIES

  • 4.1.1. Recycling history - Pb-acid
  • 4.1.2. Pb-acid batteries
  • 4.1.3. Pb-acid vs Li-ion cost breakdown
  • 4.1.4. Lessons to be learned
  • 4.1.5. Recycling alkaline cells
  • 4.1.6. Drivers for recycling Li-ion batteries 1
  • 4.1.7. Drivers for recycling Li-ion batteries 2
  • 4.1.8. Constraints on recycling Li-ion batteries
  • 4.1.9. LIB recycling process overview
  • 4.1.10. Recycling feedstock streams
  • 4.1.11. LIB recycling approaches overview
  • 4.1.12. LIB recycling approaches overview
  • 4.1.13. Recycler capabilities
  • 4.1.14. Is there enough global resource?
  • 4.1.15. Material content
  • 4.1.16. BEV Li-ion recycling mass flow
  • 4.2. Mechanical processing
    • 4.2.1. Recycling different Li-ion batteries
    • 4.2.2. Recycling different Li-ion batteries
    • 4.2.3. Lack of pack standardisation
    • 4.2.4. EV LIB discharge and disassembly
    • 4.2.5. LIB disassembly
    • 4.2.6. Mechanical processing and separation
    • 4.2.7. Mechanical processing and separation process example
    • 4.2.8. Recycling pre-treatments and processing
    • 4.2.9. Sieving
    • 4.2.10. Gravity separation/Eddy current separation
    • 4.2.11. Froth flotation
    • 4.2.12. Mechanical separation flow diagram
    • 4.2.13. Recupyl mechanical separation flow diagram
    • 4.2.14. TES-AMM black mass process
  • 4.3. Pyrometallurgy
    • 4.3.1. Pyrometallurgical recycling
    • 4.3.2. Pyrometallurgical recycling
    • 4.3.3. Pyrometallurgical recycling strengths/weaknesses
    • 4.3.4. Umicore recycling flow diagram
  • 4.4. Hydrometallurgy and material recovery
    • 4.4.1. Hydrometallurgical recycling
    • 4.4.2. Hydrometallurgical recycling strengths/weaknesses
    • 4.4.3. Recycling example via hydrometallurgy
    • 4.4.4. Recupyl recycling flow diagram
    • 4.4.5. TES-AMM hydrometallurgical process flow diagram
    • 4.4.6. Electrometallurgy
    • 4.4.7. Solvent extraction
    • 4.4.8. Precipitation
    • 4.4.9. Opportunities in Li-ion recycling
  • 4.5. Direct recycling
    • 4.5.1. Direct recycling process development
    • 4.5.2. Direct recycling strengths/weaknesses
    • 4.5.3. Hydrometallurgical-direct hybrid recycling
    • 4.5.4. ReCell Center
    • 4.5.5. Pre-processing
    • 4.5.6. Electrolyte separation
    • 4.5.7. Cathode-cathode and cathode-anode separation
    • 4.5.8. Binder Removal
    • 4.5.9. Relithiation
    • 4.5.10. Solid-state and electrochemical relithiation
    • 4.5.11. OnTo Technology
    • 4.5.12. Cathode HealingTM (Hydrothermal)
    • 4.5.13. Cathode recovery and rejuvenation
    • 4.5.14. Solid state vs. cathode healing
    • 4.5.15. Upcycling
    • 4.5.16. Direct recycling of manufacturing scrap
    • 4.5.17. Cost and life-cycle analysis
  • 4.6. Recycling technology conclusions
    • 4.6.1. Trends in Li-ion recycling
    • 4.6.2. Recycling methods map
    • 4.6.3. Li-ion production chain/loop
    • 4.6.4. Designed for recycling
    • 4.6.5. Recycling technology conclusions
    • 4.6.6. Recycling techniques compared
    • 4.6.7. Academic research
    • 4.6.8. Academic research by region

5. VALUE CHAIN AND BUSINESS MODELS FOR LI-ION BATTERY RECYCLING

  • 5.1. Why Li-ion batteries fail?
  • 5.2. What happens to end-of-life Li-ion batteries
  • 5.3. Overview of the Li-ion battery recycling value chain
  • 5.4. Closed-loop value chain of electric vehicle batteries
  • 5.5. EV battery recycling value chain
  • 5.6. The lifecycle view of EV battery recycling value chain
  • 5.7. When will Li-ion batteries be recycled?
  • 5.8. Is recycling Li-ion batteries economic?
  • 5.9. Economic analysis of battery recycling
  • 5.10. Impact of battery chemistries on recycling economics
  • 5.11. Recycling value by cathode chemistry
  • 5.12. Recycling or second life?
  • 5.13. Recycling or second life: techno-economic analysis (1)
  • 5.14. Recycling or second life: techno-economic analysis (2)
  • 5.15. Recycling or second life: complementary information
  • 5.16. Impact of recycling on Li-ion battery cost reduction
  • 5.17. Where are the retired Li-ion batteries?
  • 5.18. Reverse logistics: Li-ion battery collection
  • 5.19. Case study of a EV battery collection network in China
  • 5.20. Battery sorting and disassembling
  • 5.21. Design for recycling
  • 5.22. Concluding remarks

6. RECYCLING MARKET OVERVIEW

  • 6.1. LIB recycling market
  • 6.2. Interest in recycling across the value chain
  • 6.3. Location of Li-ion recycling companies
  • 6.4. European recycling
  • 6.5. European Recycling
  • 6.6. Asia-Pacific (exc. China) recycling
  • 6.7. Recycling in China
  • 6.8. North American recycling
  • 6.9. Sector involvement
  • 6.10. Recycling commercialisation stages
  • 6.11. Recycling technology breakdown
  • 6.12. State of recycling players
  • 6.13. Planned commercial plants
  • 6.14. Global recycling capacity
  • 6.15. Conclusions

7. COMPANY PROFILES

  • 7.1.1. List of companies included
  • 7.2. Automotive OEMs
    • 7.2.1. BMW's strategic partnerships for EV battery recycling
    • 7.2.2. Renault's circular economy efforts for Li-ion batteries
    • 7.2.3. Volkswagen plans for retired EV batteries
    • 7.2.4. Volkswagen's in-house Li-ion battery recycling plant
    • 7.2.5. Tesla's 'circular Gigafactory'
  • 7.3. Europe
    • 7.3.1. Accurec
    • 7.3.2. Akkuser Oy
    • 7.3.3. BASF
    • 7.3.4. Batrec
    • 7.3.5. Duesenfeld
    • 7.3.6. Duesenfeld process overview
    • 7.3.7. Fortum
    • 7.3.8. Fortum acquisition of Crisolteq
    • 7.3.9. Fortum intensify collaboration with BASF and Nornickel
    • 7.3.10. Fortum - further updates
    • 7.3.11. Glencore Nikkelverk
    • 7.3.12. Inobat Combining recycling and mining with Rio Tinto
    • 7.3.13. Nickelhütte Aue
    • 7.3.14. Northvolt's Revolt recycling program
    • 7.3.15. Northvolt
    • 7.3.16. ReLieVe Project (Suez, Eramet and BASF)
    • 7.3.17. Stena Recycling AB
    • 7.3.18. Umicore
  • 7.4. Asia
    • 7.4.1. 4R Energy
    • 7.4.2. 4R Energy's Namie plant
    • 7.4.3. Anhua Taisen
    • 7.4.4. CATL and Brunp Recycling
    • 7.4.5. Blast at Brunp Recycling factory
    • 7.4.6. Dowa Eco-System Co.
    • 7.4.7. EcoPro
    • 7.4.8. Ganfeng Lithium
    • 7.4.9. GEM
    • 7.4.10. GS E&C Involvement with Hyundai, including SungEel HiTech
    • 7.4.11. Guangdong Guanghua Sci-Tech
    • 7.4.12. Hefei Guoxuan High-Tech (Gotion)
    • 7.4.13. JX Nippon Metal Mining
    • 7.4.14. Kobar
    • 7.4.15. Kyoei Seiko
    • 7.4.16. Lohum Cleantech
    • 7.4.17. POSCO Joint venture with Huayou Cobalt
    • 7.4.18. Sumitomo
    • 7.4.19. Sumitomo processes
    • 7.4.20. SungEel HiTech POSCO, Samsung, LG Energy Solutions
    • 7.4.21. TES-AMM (1)
    • 7.4.22. TES-AMM (2)
  • 7.5. North America
    • 7.5.1. American Manganese
    • 7.5.2. Battery Resourcers
    • 7.5.3. Farasis
    • 7.5.4. Farasis recycling process patent
    • 7.5.5. Heritage Battery Recycling and 6K
    • 7.5.6. Li-Cycle
    • 7.5.7. Li-cycle business model
    • 7.5.8. Li-cycle process overview
    • 7.5.9. Lithion including Nouveau Monde Graphite and Hyundai Canada
    • 7.5.10. OnTo Technology
    • 7.5.11. Johnson Matthey and OnTo Technology
    • 7.5.12. Redivivus
    • 7.5.13. Redwood Materials
    • 7.5.14. Retriev Including Marubeni Corporation and Hobi International
  • 7.6. Rest of World (RoW)
    • 7.6.1. Envirostream
    • 7.6.2. Pure Battery Technologies (PBT)

8. MARKET FORECASTS

  • 8.1. Methodology explained
  • 8.2. Assumptions
  • 8.3. Global Li-ion battery recycling market 2020-2042: by region (GWh)
  • 8.4. Global Li-ion battery recycling market 2020-2042: by region (GWh) - summary
  • 8.5. Global Li-ion battery recycling market 2020-2042: by region (ktonnes)
  • 8.6. Global Li-ion battery recycling market 2020-2042: by region (ktonnes) - summary
  • 8.7. Global Li-ion battery recycling market 2020-2042: by chemistry (ktonnes)
  • 8.8. Global Li-ion battery recycling market 2020-2042: by chemistry (ktonnes) - summary
  • 8.9. Global Li-ion battery recycling market by chemistry in major regions
  • 8.10. Global recycled metals from Li-ion batteries 2020-2042 (ktonnes)
  • 8.11. Global recycled metals from Li-ion batteries 2020-2042 (ktonnes) - summary
  • 8.12. Global Li-ion battery recycling market value 2020-2042 ($ billion USD)
  • 8.13. Global Li-ion battery recycling market value share
  • 8.14. Global Li-ion battery recycling market value 2020-2042 ($ billion USD) - summary
  • 8.15. China
    • 8.15.1. Li-ion battery recycling market 2020-2042 in China: by sector (GWh)
    • 8.15.2. Li-ion battery recycling market 2020-2042 in China: by sector (GWh) - summary
    • 8.15.3. Li-ion battery recycling market 2020-2042 in China: by sector (ktonnes)
    • 8.15.4. Li-ion battery recycling market 2020-2042 in China: by sector (ktonnes) - summary
    • 8.15.5. Li-ion battery recycling market share by sector in China
    • 8.15.6. Li-ion battery recycling market 2020-2042 in China: by chemistry (GWh)
    • 8.15.7. Li-ion battery recycling market 2020-2042 in China: by chemistry (GWh) - summary
    • 8.15.8. Li-ion battery recycling market 2020-2042 in China: by chemistry (ktonnes)
    • 8.15.9. Li-ion battery recycling market 2020-2042 in China: by chemistry (ktonnes) - summary
    • 8.15.10. Li-ion battery recycling market share by cathode in China
    • 8.15.11. Recycled metals from Li-ion batteries 2020-2042 in China (ktonnes)
    • 8.15.12. Recycled metals from Li-ion batteries 2020-2042 in China (ktonnes) - summary
  • 8.16. Europe
    • 8.16.1. Li-ion battery recycling market 2020-2042 in Europe: by sector (GWh)
    • 8.16.2. Li-ion battery recycling market 2020-2042 in Europe : by sector (GWh) - summary
    • 8.16.3. Li-ion battery recycling market 2020-2042 in Europe: by sector (ktonnes)
    • 8.16.4. Li-ion battery recycling market 2020-2042 in Europe: by sector (ktonnes) - summary
    • 8.16.5. Li-ion battery recycling market share by sector in Europe
    • 8.16.6. Li-ion battery recycling market 2020-2042 in Europe: by chemistry (GWh)
    • 8.16.7. Li-ion battery recycling market 2020-2042 in Europe: by chemistry 2020-2042 (GWh) - summary
    • 8.16.8. Li-ion battery recycling market 2020-2042 in Europe: by chemistry (ktonnes)
    • 8.16.9. Li-ion battery recycling market 2020-2042 in Europe: by chemistry 2020-2042 (ktonnes) - summary
    • 8.16.10. Recycled metals from Li-ion batteries 2020-2042 in Europe (ktonnes)
    • 8.16.11. Recycled metals from Li-ion batteries 2020-2042 in Europe (ktonnes) - summary
  • 8.17. North America
    • 8.17.1. Li-ion battery recycling market 2020-2042 in North America: by sector (GWh)
    • 8.17.2. Li-ion battery recycling market 2020-2042 in North America: by sector (GWh) - summary
    • 8.17.3. Li-ion battery recycling market 2020-2042 in North America: by sector (ktonnes)
    • 8.17.4. Li-ion battery recycling market 2020-2042 in North America: by sector (ktonnes) - summary
    • 8.17.5. Li-ion battery recycling market share by sector in North America
    • 8.17.6. Li-ion battery recycling market 2020-2042 in North America: by chemistry (GWh)
    • 8.17.7. Li-ion battery recycling market 2020-2042 in North America: by chemistry (GWh) - summary
    • 8.17.8. Li-ion battery recycling market 2020-2042 in North America: by chemistry (ktonnes)
    • 8.17.9. Li-ion battery recycling market 2020-2042 in North America: by chemistry (ktonnes) - summary
    • 8.17.10. Recycled metals from Li-ion batteries in North America 2020-2042 (ktonnes)
    • 8.17.11. Recycled metals from Li-ion batteries in North America 2020-2042 (ktonnes) - summary
  • 8.18. Sector breakdown and methodology
    • 8.18.1. Global Li-ion battery recycling market 2020-2042: by sector (GWh)
    • 8.18.2. Global Li-ion battery recycling market 2020-2042 for consumer electronics: by product (GWh)
    • 8.18.3. Consumer electronics - collection rates
    • 8.18.4. Global Li-ion battery recycling market 2028-2042 for stationary energy storage (GWh)
    • 8.18.5. Global Li-ion battery recycling market 2028-2042 for stationary energy storage: by chemistry (GWh)
    • 8.18.6. Global Li-ion battery recycling market 2020-2042 for manufacturing scrap: by region (GWh)
    • 8.18.7. Global Li-ion battery recycling market 2020-2042 for car BEVs (GWh)
    • 8.18.8. Global Li-ion battery recycling market 2020-2042 for car BEVs: by chemistry (GWh)
    • 8.18.9. Global Li-ion battery recycling market 2020-2042 for non-car electric vehicles: by vehicle type (GWh)