表纸
市场调查报告书
商品编码
1030830

重塑混凝土和水泥:发展市场,脱碳 2022-2042年

Concrete and Cement Reinvented: Growing the Market, Decarbonising 2022-2042

出版日期: | 出版商: IDTechEx Ltd. | 英文 322 Slides | 商品交期: 最快1-2个工作天内

价格
  • 全貌
  • 简介
  • 目录
简介

标题
重塑混凝土和水泥:
2022-2042 年发展市场,脱碳策略

来自新兴配方、工艺、应用、3DP、电气化、剩余电力和能源储存的销售、脱碳、资产利用的新收入来源。

价值数万亿美元的水泥、混凝土等市场重塑了一切,增加了收入来源。

水泥、混凝土和相关行业现在在各个方面都面临著激动人心的 20 年转型。独一无二的是,IDTechEx 的全新商业导向报告 "混凝土和水泥改造:市场增长,2022-2042 年脱碳" 中提供了完整的信息。研究、解释和预测由位于全球的多语种 IDTechEx 分析师的博士级别负责。瞭解大量新配方、产品和功能将如何开辟许多新市场,例如多功能混凝土(电气、光学等)和无钢筋的 3D 打印大型结构及其问题。涵盖 111 个组织。其他行业的领先优势是基准。

瞭解如何通过多方面的方法,使该行业从造成 6-10% 的全球变暖变为几乎没有。通过重新配方或碳捕获,可以制造出很少或没有排放的水泥。有些甚至可以通过吸收二氧化碳制成。设施将越来越多地脱离电网,通过利用这些设施的零排放太阳能、风能和水力发电,为运行站点和车辆提供所有电力。砾石坑湖上的太阳能已经在我们身边。潮汐能和波浪能将利用该行业的许多其他水上活动,例如沙子和集料疏浚。

从炽热的岩石、沙子和凸起的废弃混凝土块中延迟供电的试验揭示了其他协同作用。电气化的水泥和混凝土设施将有利可图地出口零排放电力和储能,以帮助其他人清理他们的行为:20 年后从贱民到救世主。绿色混凝土将应对海平面上升,新形式将开辟本报告分析的许多新市场,该报告需要 300 页来涵盖所有这些主题。

经过全面的词汇表之后,40 页的执行摘要和结论本身对于那些赶时间的人来说已经足够了。主要涉及新的信息图表、比较图表、路线图和预测,它提出了 25 个主要结论,主要涉及行业的增长和脱碳盈利,揭示最大的参与者、值得关注的参与者以及未来的网站和应用。

然后介绍介绍了水泥和混凝土制造的基础知识以及如何解决问题以发展市场。这涉及寿命、性能、量化排放问题和电气化,包括燃料电池与电池,简要瞭解价值链、工艺、超高性能混凝土演变、补充胶凝材料、地质聚合物等,以及沙子和沙漠的挑战和机遇23 页

第 3 章涉及多种新兴形式的绿色混凝土。通过大量示例、意图和新想法,它彻底涵盖了过程和产品中的碳捕获、零碳、生物水泥、生物感受性、地质聚合物。20 页

第 4 章是您深入瞭解 3D 打印混凝土建筑和大型结构成为一个重要市场的过程。由于这跨越了第三世界到军事和 UHPC 隧道,因此 2022-2042 年非常重要。16 页第 5 章用 24 页介绍了自修复、自清洁、可弯曲和纺织混凝土。第 6 章扩展了石墨烯和其他超高性能混凝土 - 一些 3D 打印 - 包括实际应用和计划。8 页

第 7 章涉及自我监控、发电、储能和车辆充电混凝土,因为该行业帮助许多其他人走向绿色。通过详细的新信息图瞭解智能道路、桥梁和机场停机坪中的无线传感器网状网络等。以下是该行业将如何利用其湖泊、洞穴、沙子、岩石和废弃混凝土来存储自己的电力并将存储出售给电网和微电网的方式。45 页。

第 8 章 详细介绍了未来的采石场和矿山、碳捕获和过程电气化。它是关于水泥行业的脱碳过程 - 商机。10 页

人们普遍认为,该行业的加工机械和车辆使用柴油是因为零排放电池版本和电力尚不可行。第 9 章 解释和预测了电动和自动鑽机、挖掘机、装载机、运输工具、预拌卡车,几乎所有这些都已经可以买到。有些是有计划的概念,甚至是自己制造力量。它通过供应商提供的许多插图示例为这些增加了自主性的快速进展。38 页

第 10 章介绍了适用于完全电气化和新收入流的零排放电力和存储。以下是来自现场水能、风能和太阳能的新形式的电力,可降低成本、停机时间、回报不确定性和排放,并从售电地点创造新的收入来源。然后,附录解释并建议氢气是否能拯救石油公司而不是地球,以及它对这个行业的重要性。

来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师最多 30 分钟的电话时间,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要和结论

  • 1.1. 定义和背景
  • 1.2. 二氧化碳排放
  • 1.3. 具体好处
  • 1.4. 高性能水泥和混凝土高性能计算
  • 1.5。3D 打印混凝土——更快、更好
  • 1.6. 世界最大的水泥生产商
  • 1.7. 更换混凝土
  • 1.8。未来的混凝土和水泥生产现场
    • 1.8.1。零排放、一体化、无人化、看不见
    • 1.8.2. 未来的水泥和混凝土原料和加工
    • 1.8.3. 采石场和加工场利用资产出售剩余电力储存和电力
    • 1.8.4。网站问题及解决方案
  • 1.9. 新混凝土产品创造新市场 2022-2042
  • 1.10. 25个主要结论
    • 1.10.1。2022-2042年产业结构和总体需求结论
    • 1.10.2. 2022-2042年减排结论
    • 1.10.3. 关于超高性能混凝土 2022-2042 的结论
    • 1.10.4。关于全新水泥产品和工艺的结论
    • 1.10.5。关于工艺脱碳的结论
    • 1.10.6。结论:来自水资源管理的新收入流
  • 1.11. 水泥和混凝土行业路线图 2022-2042
  • 1.12。采矿电气化的采用时间表一般为 2022-2042
  • 1.13. 水泥和混凝土市场统计
  • 1.14. 超高性能混凝土的强劲市场
  • 1.15。聚合物混凝土市场
  • 1.16。2022-2042年全球五个地区水泥市场十亿吨

2. 水泥、混凝土、排放、电气化和市场发展简介

  • 2.1. 水泥和混凝土价值链
  • 2.2. 水泥通常是如何制造的
  • 2.3. 混凝土通常是如何制造的
  • 2.4. 2022-2024 年将更频繁地克服混凝土的局限性
  • 2.5. 沙子的问题与机遇
  • 2.6. 火星混凝土
  • 2.7. 其他未来混凝土
  • 2.8. 大型混凝土结构的 3D 打印
  • 2.9. 辅助胶凝材料和地质聚合物混凝土
  • 2.10. 混凝土制造对全球变暖的影响
  • 2.11. 推动纯电动设备排放
  • 2.12. 英国水泥行业脱碳的七个杠杆
  • 2.13. 电气化问题、响应和预测
  • 2.14. 矿业高管的看法
  • 2.15。燃料电池还是电池?

3. 绿色和聚合物混凝土:碳捕获、零碳、生物水泥、生物感受性、地质聚合物

  • 3.1. 绿色混凝土概述
  • 3.2. 更大的图
  • 3.3. 二氧化碳在建筑材料中的利用
    • 3.3.1. 市场潜力
    • 3.3.2. 基础化学:二氧化碳矿化
  • 3.4. CO2 在混凝土养护或搅拌中的利用
    • 3.4.1. 碳固化技术
    • 3.4.2. 固体技术
    • 3.4.3. 卡比克里特
  • 3.5。CO2 在混凝土骨料和添加剂中的利用
  • 3.6. 来自天然矿物的二氧化碳衍生建筑材料
  • 3.7. 来自废物的二氧化碳衍生建筑材料
    • 3.7.1. 概述
    • 3.7.2. 碳循环技术
    • 3.7.3. 蓝色星球
    • 3.7.4。碳8
    • 3.7.5。无碳
    • 3.7.6。加州大学洛杉矶分校碳建
    • 3.7.7。主要 CO2U 参与者的具体碳足迹
    • 3.7.8。影响 CO2U 在建筑中采用的因素
    • 3.7.9。建筑材料中二氧化碳利用的关键要点
  • 3.8. 联合活动
    • 3.8.1. 碳公司,C2NT
    • 3.8.2. 生物梅森
    • 3.8.3. 布依格
    • 3.8.4。CalPoly 呼吸砖
  • 3.9. 无机聚合物:地质聚合物
    • 3.9.1. 新兴聚合物一般
    • 3.9.2. 矽聚合物
    • 3.9.3. 地质聚合物水泥和混凝土化学
    • 3.9.4。产业概况
    • 3.9.5。地聚合物混凝土的优缺点
  • 3.10. 混凝土中的有机聚合物
    • 3.10.1. 概览 - 废塑料或浸渍
    • 3.10.2. 聚合物浸渍混凝土

4. 3D 打印混凝土建筑和大型结构成为一个巨大的市场

  • 4.1. 混凝土 3D 打印简史
  • 4.2. 3D 打印混凝土背后的驱动力
  • 4.3. 混凝土3D打印技术的主要类别
  • 4.4. 笛卡尔( "龙门" )挤压
  • 4.5。机械手挤压
  • 4.6. 粘合剂喷射
  • 4.7. 混凝土 3D 打印材料
  • 4.8. 著名的混凝土 3D 打印项目
  • 4.9. 采用混凝土 3D 打印的障碍
  • 4.10。混凝土 3D 打印的前景
  • 4.11. 混凝土 3D 打印公司比较

5. 自修复、自清洁、可弯曲和纺织混凝土

  • 5.1. 开裂问题
  • 5.2. 自愈细菌生物混凝土的梦想
  • 5.3. 真菌创造自愈混凝土的梦想
  • 5.4. 捕捉空气污染的自洁混凝土
    • 5.4.1. 概述
    • 5.4.2. 海德堡水泥子公司
    • 5.4.3. 意大利罗马银禧教堂
  • 5.5。可弯曲混凝土ECC无裂缝、自愈
    • 5.5.1. 概述
    • 5.5.2. 密歇根大学
    • 5.5.3. 降低成本:南洋理工大学
    • 5.5.4。现在实现的属性
    • 5.5.5。可弯曲喷涂混凝土
    • 5.5.6。拉法基-霍尔金领导力
    • 5.5.7。佛罗里达州迈阿密佩雷斯艺术博物馆
  • 5.6. 3D 针织纺织混凝土与古埃及

6. 石墨烯和其他超高性能混凝土

  • 6.1. 超高性能混凝土
    • 6.1.1. 概述
    • 6.1.2. 扩展定义
  • 6.2. 混凝土和沥青中的石墨烯
    • 6.2.1. 概述和参与者
    • 6.2.2. 石墨烯混凝土在行动
    • 6.2.3. Skanska Costain Strabag 在 HS2 火车隧道伦敦
    • 6.2.4. 混凝土
    • 6.2.5. 加摩
    • 6.2.6. 塔尔加
    • 6.2.7. 经济实惠
  • 6.3. 石墨烯应用商业化的大图

7. 自监测、发电、储能和车辆充电混凝土

  • 7.1. 自监测混凝土
    • 7.1.1. 优化主要结构制造
    • 7.1.2. 生命中的结构完整性
  • 7.2. 水泥和混凝土设施的储能利用资产
    • 7.2.1. 概述
    • 7.2.2. 重力储能 (GES)
    • 7.2.3. ARES LLC 技术概述
    • 7.2.4. 基于活塞的重力储能 (PB-GES)
    • 7.2.5. 地下 - 抽水蓄能 (U-PHES)
    • 7.2.6. 水下储能 (UWES)
  • 7.3. 热能储存 (TES) 技术概述和分类
    • 7.3.1. 电热储能 ETES 工作原理
    • 7.3.2. 潜在应用
    • 7.3.3. 好处
    • 7.3.4. IDTechEx 评估
    • 7.3.5. 2031 年的 ETES
    • 7.3.6。ETES成本计算
  • 7.4. 昼间 TES 系统 - 太阳能热电厂 (CSP)
  • 7.5。电热混凝土
  • 7.6. 半透明、发光的混凝土、智能道路
    • 7.6.1. 潜在的多模室外表面
    • 7.6.2. 发光路径
    • 7.6.3. 互动灯
    • 7.6.4。太阳能道路交叉口会在需要时照亮
    • 7.6.5。自供电、自动道路加热可消除除冰和除雪风险
    • 7.6.6。带整体照明标记的太阳能道路 - 日本概念
    • 7.6.7。美国太阳能道路公司的多功能太阳能道路
    • 7.6.8。Platio 在太阳能地面上取得成功
    • 7.6.9。室外地面发电:技术评估
  • 7.7. 充电道路 - Magment 和其他

8. 水泥行业的场地和工艺脱碳:商业机会

  • 8.1. 概述
  • 8.2. 水泥厂的碳捕集
  • 8.3. 全球混凝土和水泥协会路线图
  • 8.4. 数字化和整体方法
  • 8.5。未来工艺和相关电气化的顺序
    • 8.5.1。采石场概览
    • 8.5.2. 全电动破碎到货
    • 8.5.3. 太阳能堆垛机预示著自供电、零排放处理
    • 8.5.4。新兴的水泥和混凝土材料开采如何融入未来的矿山
    • 8.5.5。未来露天开采和加工
    • 8.5.6。现有水泥厂的数字化和可持续性升级

9. 电动和自主鑽机、挖掘机、装载机、运输机、混合卡车

  • 9.1. 公路和非公路采矿车辆概述
  • 9.2. 按矿用车辆类型划分的动力总成趋势
  • 9.3. 采矿车辆中的电气
  • 9.4. 混合动力车作为过渡阶段
  • 9.5。车辆定义:市场参与者格局和未来协同效应
  • 9.6. 采矿BEV公司比较
  • 9.7. 矿用车市场展望
  • 9.8. 当采矿 BEV 的前期价格低于柴油时 2022-2042
  • 9.9. 专利分析
  • 9.10。公司活动及计划
    • 9.10.1。英美实验矿车正在试用
    • 9.10.2. 比亚迪
    • 9.10.3。毛虫
    • 9.10.4。ETF挖矿
    • 9.10.5。日立
    • 9.10.6。基律纳
    • 9.10.7。库恩和小松
    • 9.10.8。利勃海尔集团
    • 9.10.9。雷工
    • 9.10.10。诺美特
    • 9.10.11。三一重工
    • 9.10.12。TerraEV MEDATech
    • 9.10.13。沃尔沃集团
  • 9.11。自主和远程操作的采矿车
    • 9.11.1。概述
    • 9.11.2. Artisan Vehicle Systems (山特维克)
    • 9.11.3。内置机器人
    • 9.11.4。安百拓
    • 9.11.5。小松
    • 9.11.6。沃尔沃
    • 9.11.7。GMG采矿机器人指南

10。适合完全电气化和新收入流的零排放电力和存储

  • 10.1. 现场离网零排放采矿和加工电力的进展
  • 10.2. 砾石坑水中的太阳能
  • 10.3. 太阳能与风的多种用途
  • 10.4. 零排放微电网:重新发明太阳能、水、风
  • 10.5。新的零排放电力:空中风能、海浪、潮汐流
    • 10.5.1。机载风能 AWE
    • 10.5.2. 波浪能,公海
    • 10.5.3. 潮汐能
    • 10.5.4。新发电技术kVA对比
    • 10.5.5。61 空中风能开发商
    • 10.5.6。AWE 与未来传统风力涡轮机的比较
    • 10.5.7。公海波浪发电技术
    • 10.5.8。来自可再生能源的绿色氢
    • 10.5.9。水泥混凝土行业未来光伏发电
    • 10.5.10。太阳能通常会获胜并且它开始出现在车辆上
    • 10.5.11。该行业的移动太阳能发电机组
  • 10.6. 为行业储存电力和额外的收入来源
    • 10.6.1。使用工业砂、岩石、废混凝土
    • 10.6.2. 国家可再生能源实验室
    • 10.6.3. 西门子歌美飒
    • 10.6.4。Stiesdal 存储技术
  • 10.7. 电热储能ETES
    • 10.7.1. 重力储能 GES Energy Vault
  • 10.8。利用行业资产的固定储能大局
  • 10.9. 附录:氢能拯救石油公司而不是地球?
目录
Product Code: ISBN 9781913899752

Title:
Concrete and Cement Reinvented:
Growing the Market, Decarbonising 2022-2042

New earning streams from emerging formulations, processes, applications, 3DP, electrification, sale of surplus power and energy storage, decarbonising, leveraging assets.

The trillion-dollar market for cement, concrete etc. reinvents everything, adds earning streams.

The cement, concrete and allied industries now face an exciting 20 years of transformation in all respects. Uniquely, the full picture is found in the new, commercially-oriented IDTechEx report, "Concrete and Cement Reinvented: Growing the Market, Decarbonising 2022-2042". Research, interpretation and forecasting is by PhD level, multilingual IDTechEx analysts located worldwide. See how a deluge of new formulations, products and capabilities will open up many new markets such as multifunctional concrete (electrical, optical etc.) and 3D printed large structures free of steel reinforcement and its problems. 111 organisations are covered. Other industries are benchmarked where they are ahead.

Understand how, with a multifaceted approach, this industry can go from causing 6-10% of global warming to almost none. Cement can made with little or no emission by reformulation or with carbon capture. Some will even be made by absorbing carbon dioxide. Facilities will increasingly go off-grid making all the electricity to run sites and vehicles by zero-emission solar, wind and water power that leverages those facilities. Solar on gravel pit lakes is already with us. Tidal and wave power will leverage the many other water-based activities of this industry such as sand and aggregate dredging.

Trials of delayed electricity from hot rocks, sand and raised blocks of waste concrete reveal other synergies. Electrified cement and concrete facilities will profitably export zero-emission electricity and energy storage to help others to clean up their act: pariah to saviour in 20 years. Green concrete will deal with rising sea levels and new forms will open up many new markets analysed in this report which takes 300 pages to cover all these topics.

After a comprehensive glossary, the 40-page executive summary and conclusions is sufficient in itself for those in a hurry. Mostly involving new infograms, comparison charts, roadmaps and forecasts it presents 25 primary conclusions mainly concerned with growing and decarbonising the industry profitably, revealing the largest participants, those to watch and the sites and applications of the future.

The Introduction then explains the basics of cement and concrete making and how issues will be addressed to grow the market. This involves life, performance, quantified emissions issues and electrification, including fuel cell vs battery, Briefly understand the value chains, processes, Ultra-High Performance Concrete evolution, supplementary cementitious materials, geopolymer etc., and challenges and opportunities with sand and deserts in 23 pages.

Chapter 3 concerns green concrete in its many emerging forms. With a host of examples, intentions and new ideas, it thoroughly covers carbon capture in process and product, zero carbon, bio-cement, bioreceptive, geopolymer. 20 pages.

Chapter 4 is your drill down on 3D printed concrete buildings and large structures becoming a substantial market. Since this spans third world to military and UHPC tunnelling it is very important 2022-2042. 16 pages. Chapter 5 addresses self-healing, self-cleaning, bendable and textile concrete in 24 pages. Chapter 6 expands on graphene and other Ultra High Performance Concrete - some 3D printed - including actual applications and plans. 8 pages.

Chapter 7 concerns self-monitoring, electricity-making, energy-storing and vehicle-charging concrete as the industry assists many others to go green. Learn smart roads, wireless sensor mesh networks in bridges and airport aprons and more with detailed new infograms. Here is how the industry will leverage its lakes, caverns, sand, rocks and scrap concrete to store its own electricity and sell storage to grids and microgrids. 45 pages.

Chapter 8 has detailed infograms of the quarry and mine of the future, carbon capture and process electrification. It is on process decarbonisation of the cement industry - business opportunities. 10 pages.

It is commonly believed that the processing machinery and vehicles in this industry belch diesel because zero-emission battery versions and electric power are not yet possible. Chapter 9 explains and predicts electric and autonomous drilling rigs, excavators, loaders, transport, ready-mix trucks, almost all already available to buy. Some are planned concepts, even making their own power. It adds the rapid progress on autonomy for these with many illustrated examples by supplier. 38 pages.

Chapter 10 presents suitable zero-emission electricity and storage for complete electrification and new earning streams. Here are new forms of power from on-site water, wind and solar power, reducing costs, down time, payback uncertainties and emissions and creating new earning streams from sites selling electricity. An appendix then explains and advises on whether hydrogen saves oil companies not the planet and how important it will be to this industry.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSION

  • 1.1. Definitions and background
  • 1.2. Carbon dioxide emissions
  • 1.3. Concrete benefits
  • 1.4. High performance cement and concrete HPC
  • 1.5. 3D printed concrete - faster, better
  • 1.6. World's largest cement producers
  • 1.7. Replacing concrete
  • 1.8. Concrete and cement production site of the future
    • 1.8.1. Zero-emission, integrated, unmanned, out of sight
    • 1.8.2. Future cement and concrete feedstock and processing
    • 1.8.3. Quarries and processing sites leverage assets to sell surplus power storage and electricity
    • 1.8.4. Site issues and solutions
  • 1.9. New concrete products creating new markets 2022-2042
  • 1.10. 25 primary conclusions
    • 1.10.1. Conclusions on industry structure and overall demand 2022-2042
    • 1.10.2. Conclusions on emissions reduction 2022-2042
    • 1.10.3. Conclusions concerning Ultra High Performance Concrete 2022-2042
    • 1.10.4. Conclusions concerning radically new cement products and processes
    • 1.10.5. Conclusions concerning process decarbonisation
    • 1.10.6. Conclusions: new earning streams from water management
  • 1.11. Cement and concrete industry roadmap 2022-2042
  • 1.12. Adoption timeline for mining electrification generally 2022-2042
  • 1.13. Cement and concrete market statistics
  • 1.14. Strong market for Ultra High Performance Concrete
  • 1.15. Polymer concrete market
  • 1.16. Global cement market billion tons by five regions 2022-2042

2. INTRODUCTION TO CEMENT, CONCRETE, EMISSIONS, ELECTRIFICATION AND GROWING THE MARKET

  • 2.1. Cement and concrete value chain
  • 2.2. How cement is typically made
  • 2.3. How concrete is typically made
  • 2.4. Limitations of concrete that will be overcome more often 2022-2024
  • 2.5. The problem and opportunity of sand
  • 2.6. Martian concrete
  • 2.7. Other future concrete
  • 2.8. 3D printing of large concrete structures
  • 2.9. Supplementary Cementitious Materials and geopolymer concrete
  • 2.10. Impact of concrete manufacturing on global warming
  • 2.11. Emission push for pure electric equipment
  • 2.12. Seven levers to decarbonise the UK cement industry
  • 2.13. Electrification issues, responses and predictions
  • 2.14. Views of mining executives
  • 2.15. Fuel cell or battery?

3. GREEN AND POLYMER CONCRETE: CARBON CAPTURE, ZERO CARBON, BIO-CEMENT, BIORECEPTIVE, GEOPOLYMER

  • 3.1. Green concrete overview
  • 3.2. A bigger picture
  • 3.3. Carbon dioxide utilization in building materials
    • 3.3.1. Market potential
    • 3.3.2. The Basic Chemistry: CO2 Mineralization
  • 3.4. CO2 utilization in concrete curing or mixing
    • 3.4.1. CarbonCure Technologies
    • 3.4.2. Solidia Technologies
    • 3.4.3. CarbiCrete
  • 3.5. CO2 Utilization in concrete aggregates and additives
  • 3.6. CO2-derived building materials from natural minerals
  • 3.7. CO2-derived building materials from waste
    • 3.7.1. Overview
    • 3.7.2. Carbon Upcycling Technologies
    • 3.7.3. Blue Planet
    • 3.7.4. Carbon8
    • 3.7.5. CarbonFree
    • 3.7.6. UCLA CarbonBuilt
    • 3.7.7. Concrete carbon footprint of key CO2U Players
    • 3.7.8. Factors influencing CO2U adoption in construction
    • 3.7.9. Key takeaways on carbon dioxide utilization in building materials
  • 3.8. Allied activities
    • 3.8.1. Carbon Corp., C2NT
    • 3.8.2. Bio-Mason
    • 3.8.3. Bouygues
    • 3.8.4. CalPoly Breathebrick
  • 3.9. Inorganic polymers: Geopolymers
    • 3.9.1. Emerging polymers generally
    • 3.9.2. Silicon polymers
    • 3.9.3. Geopolymer cement and concrete chemistry
    • 3.9.4. Industrial overview
    • 3.9.5. Advantages and disadvantages of geopolymer concrete
  • 3.10. Organic polymers in concrete
    • 3.10.1. Overview - waste plastics or impregnation
    • 3.10.2. Polymer impregnated concrete

4. 3D PRINTED CONCRETE BUILDINGS AND LARGE STRUCTURES BECOME A SUBSTANTIAL MARKET

  • 4.1. A Brief History of Concrete 3D Printing
  • 4.2. The Drivers behind 3D Printed Concrete
  • 4.3. Main Categories of Concrete 3D Printing Technology
  • 4.4. Cartesian ("Gantry") Extrusion
  • 4.5. Robotic Extrusion
  • 4.6. Binder Jetting
  • 4.7. Materials for Concrete 3D Printing
  • 4.8. Notable Concrete 3D Printing Projects
  • 4.9. Barriers to Adoption of Concrete 3D Printing
  • 4.10. Outlook for Concrete 3D Printing
  • 4.11. Concrete 3D printing companies compared

5. SELF-HEALING, SELF-CLEANING, BENDABLE AND TEXTILE CONCRETE

  • 5.1. The cracking problem
  • 5.2. The dream of self-healing bacterial bio-concrete
  • 5.3. The dream of fungi creating self-healing concrete
  • 5.4. Self-cleaning concrete that captures air pollution
    • 5.4.1. Overview
    • 5.4.2. HeidelbergCement subsidiaries
    • 5.4.3. Jubilee Church, Rome, Italy
  • 5.5. Bendable concrete ECC crack-free, self-healing
    • 5.5.1. Overview
    • 5.5.2. University of Michigan
    • 5.5.3. Reducing cost: Nanyang Technological University
    • 5.5.4. Properties now achieved
    • 5.5.5. Bendable sprayed-on concrete
    • 5.5.6. Lafarge-Holkim leadership
    • 5.5.7. Perez Art Museum, Miami, Florida
  • 5.6. 3D knitted textile concrete vs Ancient Egypt

6. GRAPHENE AND OTHER ULTRA HIGH PERFORMANCE CONCRETE

  • 6.1. Ultra High Performance Concrete
    • 6.1.1. Overview
    • 6.1.2. Extending the definition
  • 6.2. Graphene in concrete and asphalt
    • 6.2.1. Overview and participants
    • 6.2.2. Graphene concrete in action
    • 6.2.3. Skanska Costain Strabag in HS2 train tunnels London
    • 6.2.4. Concrene
    • 6.2.5. Garmor
    • 6.2.6. TALGA
    • 6.2.7. Easily affordable
  • 6.3. The big picture of graphene applications going commercial

7. SELF-MONITORING, ELECTRICITY-MAKING, ENERGY-STORING AND VEHICLE-CHARGING CONCRETE

  • 7.1. Self-monitoring concrete
    • 7.1.1. Optimising manufacture of major structures
    • 7.1.2. Structural integrity during life
  • 7.2. Energy storage for cement and concrete facilities leverages assets
    • 7.2.1. Overview
    • 7.2.2. Gravitational Energy Storage (GES)
    • 7.2.3. ARES LLC Technology Overview
    • 7.2.4. Piston Based Gravitational Energy Storage (PB-GES)
    • 7.2.5. Underground - Pumped Hydro Energy Storage (U-PHES)
    • 7.2.6. Under Water Energy Storage (UWES)
  • 7.3. Thermal Energy Storage (TES) Technology Overview and Classification
    • 7.3.1. Electric Thermal Energy Storage ETES Operating principle
    • 7.3.2. Potential applications
    • 7.3.3. Benefits
    • 7.3.4. IDTechEx appraisal
    • 7.3.5. ETES in context in 2031
    • 7.3.6. ETES costing
  • 7.4. Diurnal TES Systems - Solar Thermal Power Plants (CSP)
  • 7.5. Electricity and heat-making concrete
  • 7.6. Translucent, light-emitting concrete, smart roads
    • 7.6.1. Potential multi-mode outdoor surfaces
    • 7.6.2. Luminescent paths
    • 7.6.3. Interactive light
    • 7.6.4. Solar road crossings would illuminate when needed
    • 7.6.5. De-icing and snow removal risks disappear with self-powered, automated road heating
    • 7.6.6. Solar road with integral lit markers - Japanese concept
    • 7.6.7. Multifunctional solar roadway by Solar Roadways USA
    • 7.6.8. Platio success with solar ground surfaces
    • 7.6.9. Electricity generating outdoor ground surfaces: technologies assessed
  • 7.7. Electric charging roads - Magment and others

8. SITE AND PROCESS DECARBONISATION OF CEMENT INDUSTRY: BUSINESS OPPORTUNITIES

  • 8.1. Overview
  • 8.2. Carbon capture at cement plants
  • 8.3. Global Concrete and Cement Association roadmap
  • 8.4. Digitalisation and holistic approaches
  • 8.5. Sequence of future process and allied electrification
    • 8.5.1. Quarry overview
    • 8.5.2. Fully electric crushing arrives
    • 8.5.3. Solar stacker heralds self-powered, zero-emission processing
    • 8.5.4. How emerging cement and concrete materials extraction fits into the mine of the future
    • 8.5.5. Future open pit mining and process
    • 8.5.6. Digitisation and sustainability upgrading of existing cement plants

9. ELECTRIC AND AUTONOMOUS DRILLING RIGS, EXCAVATORS, LOADERS, TRANSPORT, READYMIX TRUCKS

  • 9.1. Overview of on- and off-road mining vehicles
  • 9.2. Powertrain trends by type of mining vehicle
  • 9.3. Electrics in mining vehicles
  • 9.4. Hybrids as interim stage
  • 9.5. Vehicle definitions: market player landscape and future synergies
  • 9.6. Mining BEV companies compared
  • 9.7. Mining vehicle market outlook
  • 9.8. When mining BEVs have lower up-front price than diesel 2022-2042
  • 9.9. Patent analysis
  • 9.10. Company activities and plans
    • 9.10.1. Anglo American experimental mining truck now trialing
    • 9.10.2. BYD
    • 9.10.3. Caterpillar
    • 9.10.4. ETF Mining
    • 9.10.5. Hitachi
    • 9.10.6. Kiruna
    • 9.10.7. Kuhn and Komatsu
    • 9.10.8. Liebherr Group
    • 9.10.9. LuiGong
    • 9.10.10. Normet
    • 9.10.11. Sany
    • 9.10.12. TerraEV MEDATech
    • 9.10.13. Volvo Group
  • 9.11. Autonomous and remotely-operated mining vehicles
    • 9.11.1. Overview
    • 9.11.2. Artisan Vehicle Systems (Sandvik)
    • 9.11.3. Built Robotics
    • 9.11.4. Epiroc
    • 9.11.5. Komatsu
    • 9.11.6. Volvo
    • 9.11.7. GMG mining robot guidelines

10. SUITABLE ZERO-EMISSION ELECTRICITY AND STORAGE FOR COMPLETE ELECTRIFICATION AND NEW EARNING STREAMS

  • 10.1. Progress to mining and processing electrics with off-grid zero-emission at site
  • 10.2. Solar on gravel pit water
  • 10.3. Solar with wind for multiple purposes
  • 10.4. Zero emission microgrids: solar, water, wind reinvented
  • 10.5. New zero-emission electricity: airborne wind energy, ocean wave, tidal stream
    • 10.5.1. Airborne Wind Energy AWE
    • 10.5.2. Wave power, open sea
    • 10.5.3. Tidal stream power
    • 10.5.4. New power generating technology kVA comparison
    • 10.5.5. 61 Airborne Wind Energy developers
    • 10.5.6. AWE compared to future conventional wind turbines
    • 10.5.7. Open sea wave power technologies
    • 10.5.8. Green hydrogen from renewables
    • 10.5.9. Future photovoltaic power for cement and concrete industry
    • 10.5.10. Solar usually wins and it is starting to appear on the vehicles
    • 10.5.11. Mobile solar gensets for this industry
  • 10.6. Storing electricity for the industry and extra earning streams
    • 10.6.1. Using industry sand, rocks, scrap concrete
    • 10.6.2. NREL
    • 10.6.3. Siemens Gamesa
    • 10.6.4. Stiesdal Storage Technologies
  • 10.7. Electrical thermal energy storage ETES
    • 10.7.1. Gravitational Energy Storage GES Energy Vault
  • 10.8. The big picture of stationary energy storage to leverage industry assets
  • 10.9. Appendix: Hydrogen Saves Oil Companies Not the Planet?