表纸
市场调查报告书
商品编码
1030243

电动汽车用的电动机市场 2022-2032年

Electric Motors for Electric Vehicles 2022-2032

出版日期: | 出版商: IDTechEx Ltd. | 英文 321 Pages | 商品交期: 最快1-2个工作天内

价格
  • 全貌
  • 简介
  • 目录
简介

标题
电动汽车用的电动机 2022-2032年
电动汽车电机的全球市场。电机技术、轴向磁通、轮内和基准测试。精细的区域预测。汽车、两轮车、公共汽车、货车和卡车。

到 2032 年,每年需要超过 1 亿台电动汽车电机。

快速增长的电动汽车市场对全球多个地区和不同车辆类别的电动机提出了巨大的需求。在这个市场中,我们看到了电机技术和拓扑、功率和扭矩密度、材料利用率和热管理方面的趋势。本报告针对纯电动或混合动力汽车、货车、卡车、公共汽车和两轮车市场中的这些趋势,提供 OEM 用例、基准测试和精细的市场预测。

电动机确实是电动汽车 (EV) 背后的驱动力。除了电池和电力电子设备外,电动机也是动力传动系统中的关键部件。尽管牵引电机最初是在 1800 年代开发的,但今天市场仍在不断发展,新设计、功率和扭矩密度的提高以及对所用材料的更多考虑。这些不仅仅是通过轴向磁通电机和各种原始设备制造商完全消除稀土等发展的渐进式改进。

IDTechEx 关于 2022-2032 年电动汽车电机的最新报告详细介绍了电动汽车电机市场中的 OEM 战略、趋势和新兴技术。2015 年至 2020 年间在多个地理区域销售的 250 多种电动汽车模型的广泛模型数据库有助于对电机类型、性能、热管理和市场份额进行精细的市场分析。主要原始设备制造商的技术和战略被考虑用于汽车、两轮车、轻型商用车(货车)、卡车和公共汽车,以及几个用例和几个电机单元的基准测试。新兴技术也涉及到 2032 年的市场预测,例如轴向磁通和轮毂电机。

IDTechEx 分析纯电动汽车和新兴替代品中电机的关键参数。资料来源:电动汽车电机。

轴向磁通和其他新兴选项

一项关键的新兴电机技术是轴向磁通技术。轴向磁通电机中的磁通量平行于旋转轴(与径向磁通电机中的垂直轴相比)。虽然几乎整个 EV 市场都在使用径向磁通电机,但轴向磁通电机具有多种优势。这些包括增加的功率和扭矩密度以及适合在各种场景中集成的薄饼形状因子。尽管之前缺乏采用,但该技术已经发展到我们已经看到了极大兴趣的状态。戴姆勒收购了主要参与者 YASA 以在即将推出的 AMG 电动平台中使用他们的电机,而雷诺已与 WHYLOT 合作,从 2025 年开始在其混合动力车中使用轴向磁通电机。如今汽车 EV 的轴向磁通市场非常小,但 IDTechEx 预计会有大幅增长未来 10 年需求旺盛,首先应用于高性能汽车和某些混合动力汽车。IDTechEx 还看到了轮毂电机和开关磁阻电机等典型 EV 电机的其他替代品的一些有前景的应用。

IDTechEx 预测对汽车轴向磁通电机的需求将大幅增加。资料来源:电动汽车电机。

材料和稀土

电动汽车电机市场的一个关键考虑因素是磁性材料。从 2015 年到 2020 年,永磁 (PM) 电机在电动汽车市场中的份额始终保持在 75% 以上。这些电机中使用的磁铁通常富含稀土,主要是钕,但也经常含有一系列重稀土,如镝。这些永磁电机具有出色的功率密度和效率。然而,除了主要限于中国的供应链之外,稀土还担心采矿和废物问题。2011 年,中国限制这些材料的出口导致价格大幅上涨,价格约为上年的 5 倍。这些因素结合在一起,导致多家原始设备制造商设计不含稀土的电机,例如雷诺在 Zoe 中的绕线转子设计和奥迪在 e-tron 中的感应电机。虽然雷诺是使用绕线转子设计的主要 OEM,但宝马在其第 5 代驱动器中采用了类似的设计。然而,稀土价格已经稳定并保持相当稳定,我们已经看到其他人转向 PM 设计,例如特斯拉和奥迪的下一代车型。2021年上半年钕的价格再次大幅上涨,再次给这个市场带来了不确定性。尽管存在这些担忧,IDTechEx 预计 PM 设计仍将是未来电动机的主要形式,尽管重点是稀土,尤其是重稀土的减少。

绝大多数汽车市场都在使用永磁电机。资料来源:电动汽车电机。

主要报告内容:

BEV、PHEV 和 HEV 的电动机市场分析,涉及汽车、两轮车、轻型商用车(货车)、卡车和公共汽车,包括:

  • 对不同的电机类型/拓扑进行基准测试
  • OEM 策略
  • 电动汽车行业趋势及其对电动机的影响
  • 电机设计趋势
  • 新兴电机技术和基准测试:轴向磁通、轮内和开关磁阻
  • 材料利用:磁铁(包括稀土)和绕组(圆形或发夹)
  • 电动机的热管理
  • 电动汽车用例和基准测试
  • 公司简介,包括面试

来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师最多 30 分钟的电话时间,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要

  • 1.1. 电动机
  • 1.2. 电动牵引电机类型
  • 1.3. 电动牵引电机的基准测试
  • 1.4. 电动机类型市场份额概览(2020 年)
  • 1.5。按车辆和传动系统划分的电机总数预测
  • 1.6. 按车辆和传动系统的总电机功率预测
  • 1.7. 按车辆和传动系统划分的汽车市场总规模预测
  • 1.8。预测评论
  • 1.9. 汽车电机预测(电机类型)
  • 1.10. 电动牵引电机技术趋势评述
  • 1.11. 汽车电机预测(区域)
  • 1.12。汽车电机预测(传动系统)
  • 1.13. 汽车电动机价值 $ 预测(传动系统)
  • 1.14. 电动两轮车:功率等级
  • 1.15。按功率等级的电动两轮车电机预测
  • 1.16。电机数量、类型和功率趋势:轻型商用车 (LCV)
  • 1.17. LCV 电机预测(传动系统)
  • 1.18. 卡车电机类型市场份额和功率输出要求
  • 1.19. 卡车电动机预测(动力传动系统和类别)
  • 1.20。电动巴士马达
  • 1.21. 巴士电机预测(动力传动系统)
  • 1.22。HEV汽车制造商市场份额
  • 1.23。全球 HEV 汽车电机-发电机需求预测
  • 1.24。轴向磁通电机
  • 1.25。商用轴向磁通电机的基准
  • 1.26。汽车轴向磁通电机预测
  • 1.27。轮毂电机
  • 1.28。轮毂电机预测
  • 1.29。BEV 的轴向通量和轮内基准
  • 1.30。磁铁价格上涨风险
  • 1.31。圆形绕组与棒形绕组:原始设备制造商
  • 1.32。冷却技术:OEM 策略
  • 1.33。BEV 功率密度基准测试
  • 1.34。2021 年按车辆类别划分的平均电机功率 (kWp)
  • 1.35。电机磁铁材料预测(吨)
  • 1.36。铜铝绕组预测(吨)
  • 1.37。访问 10 个 IDTechEx 门户配置文件

2. 简介

  • 2.1. 电动汽车:基本原理
  • 2.2. 并联和串联混合动力:解释
  • 2.3. 电动汽车:典型规格
  • 2.4. 行业术语
  • 2.5. 电动机:持续发展
  • 2.6. COVID-19 对电机行业的影响

3. 电动牵引电机的类型和基准

  • 3.1.1. 电动牵引电机类型
  • 3.1.2. 电动牵引电机的基准测试
  • 3.1.3. 峰与连续属性
  • 3.1.4. 效率
  • 3.1.5。无刷直流电机 (BLDC):工作原理
  • 3.1.6。BLDC 电机:优点,缺点
  • 3.1.7。BLDC 电机:基准分数
  • 3.1.8。永磁同步电机 (PMSM):工作原理
  • 3.1.9。PMSM:优点,缺点
  • 3.1.10。PMSM:基准分数
  • 3.1.11。PMSM 和 BLDC 之间的差异
  • 3.1.12。绕线转子同步电机 (WRSM):工作原理
  • 3.1.13。雷诺的无磁电机
  • 3.1.14。WRSM 电机:基准分数
  • 3.1.15。WRSM:优点,缺点
  • 3.1.16。交流感应电机 (ACIM):工作原理
  • 3.1.17。交流感应电机 (ACIM)
  • 3.1.18。交流感应电机:基准分数
  • 3.1.19。交流感应电机:优点,缺点
  • 3.1.20。磁阻电机
  • 3.1.21。磁阻电机:工作原理
  • 3.1.22。开关磁阻电机 (SRM)
  • 3.1.23。开关磁阻电机:基准分数
  • 3.1.24。永磁辅助磁阻 (PMAR)
  • 3.1.25。PMAR Motors:基准分数
  • 3.1.26。再生
  • 3.2. 电动牵引电机:总结和基准测试结果
    • 3.2.1. 牵引电机结构及优点比较
    • 3.2.2. 电机效率比较
    • 3.2.3. 电动牵引电机的基准测试
    • 3.2.4. 多电机:解释

4. 电动汽车的汽车市场

  • 4.1. 按地区划分的 BEV 和 PHEV 电机类型市场份额
  • 4.2. 主要汽车制造商在 PMSM 上的收敛
  • 4.3. 电机类型市场份额预测
  • 4.4. 汽车电动牵引电机趋势评述
  • 4.5。汽车电机预测(区域)
  • 4.6. 汽车电机预测(传动系统)
  • 4.7. 汽车电动机价值 $ 预测(传动系统)
  • 4.8. 汽车电机功率预测(区域)
  • 4.9. 汽车电机功率预测(传动系统)
  • 4.10。汽车电动机价值 $ 预测(传动系统)
  • 4.11. 电动汽车研究

5. 电动两轮车

  • 5.1. 电动两轮车的重要性
  • 5.2. 电动两轮车:功率等级
  • 5.3. 电动两轮车电压特性
  • 5.4. 电动摩托车性能
  • 5.5。摩托车有独特的要求
  • 5.6. 两轮车中的电机技术
  • 5.7. 电动两轮车的组件开发人员
  • 5.8。电动摩托车
  • 5.9. Magalec:用于赛车的电动马达
  • 5.10. 哈雷戴维森 LiveWire
  • 5.11. 零摩托车
  • 5.12。按功率等级的电动两轮车电机预测
  • 5.13. 电动两轮车研究

6. 电动轻型商用车 (ELCV)

  • 6.1. 介绍
  • 6.2. LCV 定义
  • 6.3. eLCV 市场驱动因素
  • 6.4. 区域概要
  • 6.5。eLCV 中使用的电机
  • 6.6. 电机数量、类型和功率趋势:LCV
  • 6.7. LCV 电机预测(传动系统)
  • 6.8. 轻型商用车研究

7. 电动卡车

  • 7.1. 电动卡车:驱动程序和障碍
  • 7.2. 卡车分类
  • 7.3. 零排放中重型卡车的范围
  • 7.4. 沃尔沃
  • 7.5。Meritor 供应 Hyliion、Volta 卡车、Lion Electric 和 Autocar 卡车
  • 7.6. 卡车电机类型市场份额和功率输出要求
  • 7.7. 卡车电动机预测(动力传动系统和类别)
  • 7.8。电动卡车研究

8. 电动巴士

  • 8.1. 总线类型
  • 8.2. 电动巴士采用的挑战
  • 8.3. 公交车电气化的驱动因素和时机
  • 8.4. 达纳TM4
  • 8.5。设备制造商
  • 8.6. 采埃孚
  • 8.7. Traktionssysteme 奥地利 (TSA)
  • 8.8. 电动巴士马达
  • 8.9. 巴士电机预测(动力传动系统)
  • 8.10. 电动巴士研究

9. HEV 驱动技术

  • 9.1. HEV汽车制造商市场份额
  • 9.2. 混合动力协同驱动/丰田混合动力系统
  • 9.3. 混合动力协同驱动/丰田混合动力系统
  • 9.4. 本田
  • 9.5。本田运动混合动力系统
  • 9.6. 本田的 2 马达混合动力系统
  • 9.7. 日产 Note e-POWER
  • 9.8. 现代索纳塔混合动力车
  • 9.9. 丰田普锐斯驱动电机:2004-2010
  • 9.10。丰田普锐斯驱动电机:2004-2017
  • 9.11。混合 MG 的比较
  • 9.12。全球 HEV 汽车电机/发电机趋势
  • 9.13。HEV 汽车 MG 趋势和假设
  • 9.14。全球HEV汽车MG需求预测
  • 9.15。高压混合动力汽车研究

10. 新兴电机技术

  • 10.1.1. 特斯拉的碳纤维电机
  • 10.1.2. Equipmake:功率密度最高的电机?
  • 10.1.3. AVL 蜂鸟
  • 10.1.4. 雷诺潜在的下一代汽车
  • 10.2. 轴向磁通电机
    • 10.2.1. 径向磁通电机
    • 10.2.2. 轴向磁通电机
    • 10.2.3. 径向磁通与轴向磁通电机
    • 10.2.4. 有轭与无轭轴向通量
    • 10.2.5。轴向磁通电机:有趣的玩家
    • 10.2.6. 轴向磁通电机播放器列表
    • 10.2.7。飞机中的轴向磁通电机
    • 10.2.8. 西门子
    • 10.2.9。AVID EVO 10 kW/kg
    • 10.2.10。AVID登陆大订单
    • 10.2.11。EMRAX
    • 10.2.12。麦格纳克斯
    • 10.2.13。麦格力推进
    • 10.2.14。赛埃塔
    • 10.2.15。惠洛特
    • 10.2.16。WHYLOT 和雷诺
    • 10.2.17。YASA 轴向磁通电机
    • 10.2.18。YASA 和科尼赛克
    • 10.2.19。亚萨和法拉利
    • 10.2.20。YASA 供应 Makani 无人机
    • 10.2.21。戴姆勒收购 YASA
    • 10.2.22。商用轴向磁通电机的基准
    • 10.2.23。汽车轴向磁通电机预测
  • 10.3. 轮毂电机
    • 10.3.1. 轮毂电机
    • 10.3.2. 轮毂电机的风险与机遇
    • 10.3.3. 埃拉菲
    • 10.3.4. 宝石汽车
    • 10.3.5。日本电产
    • 10.3.6。百变电气
    • 10.3.7。轮毂电机车辆示例
    • 10.3.8。轮毂电机的轴向磁通
    • 10.3.9。轮毂电机预测
  • 10.4. 轴向磁通和轮毂电机对比 BEV 电机
    • 10.4.1. BEV 的轴向通量和轮内基准
    • 10.4.2. BEV 的轴向通量和轮内基准
    • 10.4.3. 相对于传统的轴向通量和轮内基准
  • 10.5。开关磁阻电机的出现?
    • 10.5.1。开关磁阻电机 (SRM)
    • 10.5.2. SRM 没有永久磁铁
    • 10.5.3. 先进电机 (AEM)
    • 10.5.4。AEM 和宾利
    • 10.5.5。RETORQ电机
    • 10.5.6。转潮科技

11。电机材料

  • 11.1.1. 电动机需要哪些材料?
  • 11.2. 磁性材料
    • 11.2.1. 转子中的磁性材料分布
    • 11.2.2. ID4 与 Leaf 与 Model 3 转子
    • 11.2.3. 电机磁铁成分
    • 11.2.4. 稀土金属开采
    • 11.2.5。中国对稀土的控制
    • 11.2.6. 磁铁价格上涨风险
    • 11.2.7。减少电动机中稀土的使用
    • 11.2.8。减少电动机中稀土的使用
    • 11.2.9。沃尔沃资助 Niron 用于无稀土磁铁
    • 11.2.10。OEM方式
    • 11.2.11。电机磁铁材料预测(吨)
  • 11.3. 转子和定子绕组
    • 11.3.1. 转子中的铝与铜
    • 11.3.2. 定子中铜的圆线与发夹
    • 11.3.3. 名爵汽车(上汽)
    • 11.3.4. 大众的MEB
    • 11.3.5。圆形绕组与棒形绕组:原始设备制造商
    • 11.3.6。发夹式绕组区域市场份额
    • 11.3.7。铝绕组与铜绕组
    • 11.3.8。示例:带有铝绕组的 SRM?
    • 11.3.9。铜铝绕组预测(吨)
    • 11.3.10。总结与展望

12。电动机的热管理

  • 12.1. 电动机:永磁与替代品
  • 12.2. 冷却电动机
  • 12.3. 当前的 OEM 策略:空气冷却
  • 12.4. 当前 OEM 策略:油冷
  • 12.5。里卡多的新型 48V 电机
  • 12.6. 当前 OEM 策略:水-乙二醇冷却
  • 12.7. 电动机热管理概述
  • 12.8。冷却技术:OEM 策略
  • 12.9。电机冷却技术市场份额及展望
  • 12.10。按功率输出的电机冷却策略
  • 12.11。液体冷却的最新进展
  • 12.12。冲床动力总成
  • 12.13。新兴技术:浸入式冷却
  • 12.14。新兴技术:制冷剂冷却
  • 12.15。新兴技术:相变材料
  • 12.16。灌封和封装
  • 12.17。选择正确的电机绝缘
  • 12.18。灌封和封装:播放器

13。电动汽车:OEM 用例和供应合作伙伴关系

  • 13.1. 爱信精机、电装和丰田汽车组建 BlueE Nexus
  • 13.2. 奥迪e-tron
  • 13.3. 奥迪e-tron
  • 13.4. 奥迪 Q4 e-tron
  • 13.5。博格华纳收购德尔福
  • 13.6. 宝马 i3 2016
  • 13.7. 宝马第 5 代驾驶
  • 13.8. 雪佛兰 Bolt Onwards (LG)
  • 13.9. FCA 和 Dana
  • 13.10。FCA 和达美航空
  • 13.11。FCA 和大陆
  • 13.12。菲亚特 500 电动 (GKN)
  • 13.13. 福特野马 Mach-E(博格华纳和麦格纳)
  • 13.14。福特和舍弗勒
  • 13.15。通用 Ultium 驱动器
  • 13.16。现代 E-GMP(博格华纳)
  • 13.17。捷豹 I-PACE (AAM)
  • 13.18. LG电子和麦格纳
  • 13.19。洛兹敦汽车公司(Elaphe)
  • 13.20。日本电产:富士康会谈
  • 13.21。日产聆风
  • 13.22。欧宝/标致和Vitesco
  • 13.23。保时捷泰康
  • 13.24。Stellantis 共享平台 (Npe)
  • 13.25。特斯拉感应电机
  • 13.26。特斯拉 Model S
  • 13.27。特斯拉永磁电机
  • 13.28。特斯拉模型 3
  • 13.29。丰田普锐斯 2004 至 2010
  • 13.30。丰田普锐斯
  • 13.31。大众 ID3/ID4
  • 13.32。雅马哈
  • 13.33。其他电机制造商预测/目标

14。电动汽车:OEM 基准

  • 14.1. BEV 电机规格汇总
  • 14.2. BEV 功率密度基准测试
  • 14.3. BEV 功率密度基准测试
  • 14.4. BEV 功率和扭矩密度基准

15。预测和假设

  • 15.1. 预测方法和假设
  • 15.2. 汽车价格预测和假设
  • 15.3. 每辆车的电机和每辆车的 kWp 假设
  • 15.4. 按车辆和传动系统划分的电机总数预测
  • 15.5。按车辆和传动系统的总电机功率预测
  • 15.6。按车辆和传动系统划分的汽车市场总规模预测
  • 15.7。汽车电机预测(区域)
  • 15.8。汽车电机预测(传动系统)
  • 15.9。汽车电机预测(电机类型)
  • 15.10。汽车电机功率预测(区域)
  • 15.11。汽车电机功率预测(传动系统)
  • 15.12。汽车电动机价值 $ 预测(传动系统)
  • 15.13。按功率等级的电动两轮车电机预测
  • 15.14。LCV 电机预测(传动系统)
  • 15.15。卡车电动机预测(动力传动系统和类别)
  • 15.16。巴士电机预测(动力传动系统)
  • 15.17。全球HEV汽车MG需求预测
  • 15.18。汽车轴向磁通电机预测
  • 15.19。轮毂电机预测
  • 15.20。电机磁铁材料预测(吨)
  • 15.21。铜铝绕组预测(吨)
目录
Product Code: ISBN 9781913899769

Title:
Electric Motors for Electric Vehicles 2022-2032
Global market for electric vehicle motors. Motor technology, axial flux, in-wheel and benchmarking. Granular regional forecasts. Cars, two-wheelers, buses, vans and trucks.

Over 100 million electric vehicle motors required per year by 2032.

The rapidly growing electric vehicle market puts a huge demand on electric motors across several global regions and different vehicle categories. Within this market, we are seeing trends around motor technology and topology, power and torque density, materials utilisation and thermal management. This report addresses these trends within the markets for battery-electric or hybrid cars, vans, trucks, buses and two-wheelers with OEM use-cases, benchmarking and granular market forecasts.

Electric motors truly are the driving force behind electric vehicles (EVs). In addition to the batteries and power electronics, the electric motor is a critical component within the drivetrain. Despite electric traction motors originally being developed in the 1800s, the market is still evolving today with new designs, improving power and torque density and more considerations around the materials used. These aren't just incremental improvements either with developments such as axial flux motors and various OEMs eliminating rare-earths altogether.

The latest report from IDTechEx on Electric Vehicle Motors 2022-2032 details OEM strategies, trends and emerging technologies within the motor market for EVs. An extensive model database of over 250 EV models sold between 2015-2020 in several geographic regions aids in a granular market analysis of motor type, performance, thermal management and market shares. Technologies and strategies of major OEMs are considered for cars, two-wheelers, light commercial vehicles (vans), trucks and buses along with several use-cases and benchmarking of several motor units. Emerging technologies are also addressed with market forecasts through to 2032 such as axial flux and in-wheel motors.

IDTechEx analyses key parameters of motors in BEVs and emerging alternatives. Source: Electric Vehicle Motors.

Axial Flux and Other Emerging Options

A key emerging motor technology is that of axial flux. The magnetic flux is parallel to the axis of rotation in an axial flux motor (compared to perpendicular in radial flux machines). Whilst almost the entire EV market is using a form of radial flux motor, axial flux motors present several benefits. These include increased power and torque density and a pancake form factor ideal for integration in various scenarios. Despite the previous lack of adoption, the technology has evolved to the state where we have seen significant interest. Daimler acquired key players YASA to use their motors in the upcoming AMG electric platform and Renault has partnered with WHYLOT to use axial flux motors in their hybrids starting in 2025. The axial flux market in automotive EVs is very small today but IDTechEx expects a huge increase in demand over the next 10 years, with first applications in high-performance vehicles and certain hybrid applications. IDTechEx also sees some promising applications for other alternatives to typical EV motors such as in-wheel motors and switched reluctance motors.

IDTechEx forecast a large increase in demand for automotive axial flux motors. Source: Electric Vehicle Motors.

Materials and Rare-earths

A key consideration for the EV motor market is that of magnetic materials. From 2015-2020 the share of permanent magnet (PM) motors in the electric car market remained consistently above 75%. The magnets used in these motors are typically rich in rare-earths, mainly neodymium, but also often contain a series of heavy rare-earth such as dysprosium. These PM motors present excellent power density and efficiency. However, rare-earths have concerns around mining and waste in addition to a supply chain largely confined to China. In 2011, China restricted exports of these materials resulting in a massive price spike with prices reaching approximately 5 times that of the previous year. These factors combined resulted in several OEMs designing motors without rare-earths such as Renault's wound rotor design in the Zoe and Audi's induction motor in the e-tron. Whilst Renault were the main OEM using a wound rotor design, BMW has adopted similar for their 5th generation drive. However, the price of rare-earths has settled and remained fairly consistent and we have seen others switch to PM designs such as Tesla and Audi's next-generation models. The price of neodymium has risen drastically again in the first half of 2021, once again creating uncertainty in this market. Despite these concerns, IDTechEx expects PM designs to remain the dominant form of electric motor going into the future albeit with a focus on rare-earth and especially heavy rare-earth reductions.

The vast majority of the car market is using permanent magnet motors. Source: Electric Vehicle Motors.

Key Report Content:

Analysis of the electric motor markets in BEVs, PHEVs and HEVs across cars, two-wheelers, light commercial vehicles (vans), trucks and buses including:

  • Benchmarking different motor types/topologies
  • OEM strategies
  • EV industry trends and the impact on electric motors
  • Trends in motor design
  • Emerging motor technologies and benchmarking: axial flux, in-wheel and switched reluctance
  • Materials utilization: magnets (including rare earths) and windings (round or hairpin)
  • Thermal management of electric motors
  • EV use-cases and benchmarking
  • Company profiles including interviews

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Electric Motors
  • 1.2. Electric Traction Motor Types
  • 1.3. Benchmarking Electric Traction Motors
  • 1.4. Overview of Electric Motor Type Market Share (2020)
  • 1.5. Total Motors Forecast by Vehicle and Drivetrain
  • 1.6. Total Motor Power Forecast by Vehicle and Drivetrain
  • 1.7. Total Motor Market Size Forecast by Vehicle and Drivetrain
  • 1.8. Forecast Commentary
  • 1.9. Automotive Electric Motor Forecast (Motor Type)
  • 1.10. Commentary on Electric Traction Motor Tech Trends
  • 1.11. Automotive Electric Motor Forecast (Regional)
  • 1.12. Automotive Electric Motor Forecast (Drivetrain)
  • 1.13. Automotive Electric Motor Value $ Forecast (Drivetrain)
  • 1.14. Electric Two-wheelers: Power Classes
  • 1.15. Electric Two-wheelers Motor Forecast by Power Class
  • 1.16. Motor Number, Type and Power Trends: Light Commercial Vehicles (LCV)
  • 1.17. LCV Electric Motor Forecast (Drivetrain)
  • 1.18. Truck Motor Type Market Share and Power Output Requirements
  • 1.19. Truck Electric Motor Forecast (Drivetrain & Category)
  • 1.20. Electric Bus Motors
  • 1.21. Bus Electric Motor Forecast (Drivetrain)
  • 1.22. HEV Car Manufacturer Market Share
  • 1.23. Global HEV Car Motor-Generator Demand Forecast
  • 1.24. Axial Flux Motors
  • 1.25. Benchmark of Commercial Axial Flux Motors
  • 1.26. Automotive Axial Flux Motor Forecast
  • 1.27. In-wheel Motors
  • 1.28. In-wheel Motors Forecast
  • 1.29. Axial Flux and In-wheel Benchmark against BEVs
  • 1.30. Magnet Price Increase Risk
  • 1.31. Round vs Bar Windings: OEMs
  • 1.32. Cooling Technology: OEM Strategies
  • 1.33. BEV Power Density Benchmarking
  • 1.34. Average Motor Power 2021 by Vehicle Category (kWp)
  • 1.35. Materials in Motor Magnets Forecast (tonnes)
  • 1.36. Copper and Aluminium Winding Forecast (tonnes)
  • 1.37. Access to 10 IDTechEx Portal Profiles

2. INTRODUCTION

  • 2.1. Electric Vehicles: Basic Principle
  • 2.2. Parallel and Series Hybrids: Explained
  • 2.3. Electric Vehicles: Typical Specs
  • 2.4. Industry Terms
  • 2.5. Electric Motors: Continued Developments
  • 2.6. The Impact of COVID-19 on the Electric Motor Industry

3. TYPES OF ELECTRIC TRACTION MOTOR AND BENCHMARKING

  • 3.1.1. Electric Traction Motor Types
  • 3.1.2. Benchmarking Electric Traction Motors
  • 3.1.3. Peak vs Continuous Properties
  • 3.1.4. Efficiency
  • 3.1.5. Brushless DC Motors (BLDC): Working Principle
  • 3.1.6. BLDC Motors: Advantages, Disadvantages
  • 3.1.7. BLDC Motors: Benchmarking Scores
  • 3.1.8. Permanent Magnet Synchronous Motors (PMSM): Working Principle
  • 3.1.9. PMSM: Advantages, Disadvantages
  • 3.1.10. PMSM: Benchmarking Scores
  • 3.1.11. Differences Between PMSM and BLDC
  • 3.1.12. Wound Rotor Synchronous Motor (WRSM): Working Principle
  • 3.1.13. Renault's Magnet Free Motor
  • 3.1.14. WRSM Motors: Benchmarking Scores
  • 3.1.15. WRSM: Advantages, Disadvantages
  • 3.1.16. AC Induction Motors (ACIM): Working Principle
  • 3.1.17. AC Induction Motor (ACIM)
  • 3.1.18. AC Induction Motors: Benchmarking Scores
  • 3.1.19. AC Induction Motor: Advantages, Disadvantages
  • 3.1.20. Reluctance Motors
  • 3.1.21. Reluctance Motor: Working Principle
  • 3.1.22. Switched Reluctance Motor (SRM)
  • 3.1.23. Switched Reluctance Motors: Benchmarking Scores
  • 3.1.24. Permanent Magnet Assisted Reluctance (PMAR)
  • 3.1.25. PMAR Motors: Benchmarking Scores
  • 3.1.26. Regeneration
  • 3.2. Electric Traction Motors: Summary and Benchmarking Results
    • 3.2.1. Comparison of Traction Motor Construction and Merits
    • 3.2.2. Motor Efficiency Comparison
    • 3.2.3. Benchmarking Electric Traction Motors
    • 3.2.4. Multiple Motors: Explained

4. MOTOR MARKET IN ELECTRIC CARS

  • 4.1. BEV and PHEV Motor Type Market Share by Region
  • 4.2. Convergence on PMSM by Major Automakers
  • 4.3. Motor Type Market Share Forecast
  • 4.4. Commentary on Electric Traction Motor Trends in Cars
  • 4.5. Automotive Electric Motor Forecast (Regional)
  • 4.6. Automotive Electric Motor Forecast (Drivetrain)
  • 4.7. Automotive Electric Motor Value $ Forecast (Drivetrain)
  • 4.8. Automotive Electric Motor Power Forecast (Regional)
  • 4.9. Automotive Electric Motor Power Forecast (Drivetrain)
  • 4.10. Automotive Electric Motor Value $ Forecast (Drivetrain)
  • 4.11. Electric Car Research

5. ELECTRIC TWO-WHEELERS

  • 5.1. The Importance of Electric Two-wheelers
  • 5.2. Electric Two-wheelers: Power Classes
  • 5.3. Electric Two-wheeler Voltage Characteristics
  • 5.4. Electric Motorcycle Performance
  • 5.5. Motorcycles Have Unique Requirements
  • 5.6. Motor Technologies in Two-wheelers
  • 5.7. Component Developers for Electric Two Wheelers
  • 5.8. Electric Motorcycles
  • 5.9. Magalec: Electric Motors for Racing Bikes
  • 5.10. Harley-Davidson LiveWire
  • 5.11. Zero Motorcycles
  • 5.12. Electric Two-wheelers Motor Forecast by Power Class
  • 5.13. Electric Two-wheeler Research

6. ELECTRIC LIGHT COMMERCIAL VEHICLES (ELCV)

  • 6.1. Introduction
  • 6.2. LCV Definition
  • 6.3. eLCV Market Drivers
  • 6.4. Regional Summary
  • 6.5. Motors Used in eLCVs
  • 6.6. Motor Number, Type and Power Trends: LCV
  • 6.7. LCV Electric Motor Forecast (Drivetrain)
  • 6.8. Light Commercial Vehicle Research

7. ELECTRIC TRUCKS

  • 7.1. Electric Trucks: Drivers and Barriers
  • 7.2. Truck Classifications
  • 7.3. Range of Zero Emission Medium and Heavy Trucks
  • 7.4. Volvo
  • 7.5. Meritor supplies Hyliion, Volta Trucks, Lion Electric and Autocar Trucks
  • 7.6. Truck Motor Type Market Share and Power Output Requirements
  • 7.7. Truck Electric Motor Forecast (Drivetrain & Category)
  • 7.8. Electric Truck Research

8. ELECTRIC BUSES

  • 8.1. Bus Types
  • 8.2. Challenges for Electric Bus Adoption
  • 8.3. Drivers and Timing of Bus Electrification
  • 8.4. Dana TM4
  • 8.5. Equipmake
  • 8.6. ZF
  • 8.7. Traktionssysteme Austria (TSA)
  • 8.8. Electric Bus Motors
  • 8.9. Bus Electric Motor Forecast (Drivetrain)
  • 8.10. Electric Bus Research

9. HEV DRIVE TECHNOLOGY

  • 9.1. HEV Car Manufacturer Market Share
  • 9.2. Hybrid Synergy Drive/ Toyota Hybrid System
  • 9.3. Hybrid Synergy Drive/ Toyota Hybrid System
  • 9.4. Honda
  • 9.5. Honda Sport Hybrid Systems
  • 9.6. Honda's 2 Motor Hybrid System
  • 9.7. Nissan Note e-POWER
  • 9.8. Hyundai Sonata Hybrid
  • 9.9. Toyota Prius Drive Motor: 2004-2010
  • 9.10. Toyota Prius Drive Motor: 2004-2017
  • 9.11. Comparison of Hybrid MGs
  • 9.12. Global HEV Car Motor/Generator Trends
  • 9.13. HEV Car MGs Trends and Assumptions
  • 9.14. Global HEV Car MG Demand Forecast
  • 9.15. High Voltage Hybrid Electric Vehicle Research

10. EMERGING MOTOR TECHNOLOGIES

  • 10.1.1. Tesla's Carbon Wrapped Motor
  • 10.1.2. Equipmake: The Most Power Dense Motor?
  • 10.1.3. AVL Hummingbird
  • 10.1.4. Renault's Potential Next Generation Motor
  • 10.2. Axial Flux Motors
    • 10.2.1. Radial Flux Motors
    • 10.2.2. Axial Flux Motors
    • 10.2.3. Radial Flux vs Axial Flux Motors
    • 10.2.4. Yoked vs Yokeless Axial Flux
    • 10.2.5. Axial Flux Motors: Interesting Players
    • 10.2.6. List of Axial Flux Motor Players
    • 10.2.7. Axial Flux Motors in Aircraft
    • 10.2.8. Siemens
    • 10.2.9. AVID EVO at 10 kW/kg
    • 10.2.10. AVID Landing Large Orders
    • 10.2.11. EMRAX
    • 10.2.12. Magnax
    • 10.2.13. Magelec Propulsion
    • 10.2.14. Saietta
    • 10.2.15. WHYLOT
    • 10.2.16. WHYLOT and Renault
    • 10.2.17. YASA Axial Flux Motors
    • 10.2.18. YASA and Koenigsegg
    • 10.2.19. YASA and Ferrari
    • 10.2.20. YASA Supplies Makani Drone
    • 10.2.21. Daimler Acquires YASA
    • 10.2.22. Benchmark of Commercial Axial Flux Motors
    • 10.2.23. Automotive Axial Flux Motor Forecast
  • 10.3. In-wheel Motors
    • 10.3.1. In-wheel Motors
    • 10.3.2. Risks and Opportunities for In-wheel Motors
    • 10.3.3. Elaphe
    • 10.3.4. Gem Motors
    • 10.3.5. Nidec
    • 10.3.6. Protean Electric
    • 10.3.7. Examples of Vehicles with In-wheel Motors
    • 10.3.8. Axial Flux for In-wheel Motors
    • 10.3.9. In-wheel Motors Forecast
  • 10.4. Axial Flux and In-wheel Motors Benchmarking Against BEV Motors
    • 10.4.1. Axial Flux and In-wheel Benchmark against BEVs
    • 10.4.2. Axial Flux and In-wheel Benchmark against BEVs
    • 10.4.3. Axial Flux and In-wheel Benchmark against Traditional
  • 10.5. Emergence of Switched Reluctance Motors?
    • 10.5.1. Switched Reluctance Motor (SRM)
    • 10.5.2. No Permanent Magnets for SRMs
    • 10.5.3. Advanced Electric Machines (AEM)
    • 10.5.4. AEM and Bentley
    • 10.5.5. RETORQ Motors
    • 10.5.6. Turntide Technologies

11. MATERIALS FOR ELECTRIC MOTORS

  • 11.1.1. Which Materials are Required for Electric Motors?
  • 11.2. Magnetic Materials
    • 11.2.1. Magnetic Material Distribution in Rotors
    • 11.2.2. ID4 vs Leaf vs Model 3 Rotors
    • 11.2.3. Magnet Composition for Motors
    • 11.2.4. Mining of Rare-Earth Metals
    • 11.2.5. China's Control of Rare-Earths
    • 11.2.6. Magnet Price Increase Risk
    • 11.2.7. Reducing Rare-Earth Usage in Electric Motors
    • 11.2.8. Reducing Rare-Earth Usage in Electric Motors
    • 11.2.9. Volvo Funding Niron for Rare-earth Free Magnets
    • 11.2.10. OEM Approaches
    • 11.2.11. Materials in Motor Magnets Forecast (tonnes)
  • 11.3. Rotor and Stator Windings
    • 11.3.1. Aluminium vs Copper in Rotors
    • 11.3.2. Round Wire vs Hairpins for Copper in Stators
    • 11.3.3. MG Motors (SAIC)
    • 11.3.4. VW's MEB
    • 11.3.5. Round vs Bar Windings: OEMs
    • 11.3.6. Hairpin Winding Regional Market Shares
    • 11.3.7. Aluminium vs Copper Windings
    • 11.3.8. Example: SRMs with Aluminium Windings?
    • 11.3.9. Copper and Aluminium Winding Forecast (tonnes)
    • 11.3.10. Summary and Outlook

12. THERMAL MANAGEMENT OF ELECTRIC MOTORS

  • 12.1. Electric Motors: Permanent Magnet vs Alternatives
  • 12.2. Cooling Electric Motors
  • 12.3. Current OEM Strategies: Air Cooling
  • 12.4. Current OEM Strategies: Oil Cooling
  • 12.5. Ricardo's New 48V Motor
  • 12.6. Current OEM Strategies: Water-glycol Cooling
  • 12.7. Electric Motor Thermal Management Overview
  • 12.8. Cooling Technology: OEM Strategies
  • 12.9. Motor Cooling Technology Market Share and Outlook
  • 12.10. Motor Cooling Strategy by Power Output
  • 12.11. Recent Advancements in Liquid Cooling
  • 12.12. Punch Powertrain
  • 12.13. Emerging Technologies: Immersion Cooling
  • 12.14. Emerging Technologies: Refrigerant Cooling
  • 12.15. Emerging Technologies: Phase Change Materials
  • 12.16. Potting & Encapsulation
  • 12.17. Choosing the Right Motor Insulation
  • 12.18. Potting & Encapsulation: Players

13. EV MOTORS: OEM USE-CASES AND SUPPLY PARTNERSHIPS

  • 13.1. Aisin Seiki, DENSO and Toyota Motor form BluE Nexus
  • 13.2. Audi e-tron
  • 13.3. Audi e-tron
  • 13.4. Audi Q4 e-tron
  • 13.5. BorgWarner Acquires Delphi
  • 13.6. BMW i3 2016
  • 13.7. BMW 5th Gen Drive
  • 13.8. Chevrolet Bolt Onwards (LG)
  • 13.9. FCA and Dana
  • 13.10. FCA and Delta
  • 13.11. FCA and Continental
  • 13.12. Fiat 500 Electric (GKN)
  • 13.13. Ford Mustang Mach-E (BorgWarner and Magna)
  • 13.14. Ford and Schaeffler
  • 13.15. GM Ultium Drive
  • 13.16. Hyundai E-GMP (BorgWarner)
  • 13.17. Jaguar I-PACE (AAM)
  • 13.18. LG Electronics and Magna
  • 13.19. Lordstown Motors (Elaphe)
  • 13.20. Nidec: Foxconn Talks
  • 13.21. Nissan Leaf
  • 13.22. Opel/Peugeot and Vitesco
  • 13.23. Porsche Taycan
  • 13.24. Stellantis Shared Platform (Npe)
  • 13.25. Tesla Induction Motor
  • 13.26. Tesla Model S
  • 13.27. Tesla PM Motor
  • 13.28. Tesla Model 3
  • 13.29. Toyota Prius 2004 to 2010
  • 13.30. Toyota Prius
  • 13.31. VW ID3/ID4
  • 13.32. Yamaha
  • 13.33. Other Motor Manufacturer Predictions/Targets

14. EV MOTORS: OEM BENCHMARKING

  • 14.1. BEV Motor Specification Summary
  • 14.2. BEV Power Density Benchmarking
  • 14.3. BEV Power Density Benchmarking
  • 14.4. BEV Power and Torque Density Benchmark

15. FORECASTS AND ASSUMPTIONS

  • 15.1. Forecast Methodology & Assumptions
  • 15.2. Motor Price Forecast and Assumptions
  • 15.3. Motor per Vehicle and kWp per Vehicle Assumptions
  • 15.4. Total Motors Forecast by Vehicle and Drivetrain
  • 15.5. Total Motor Power Forecast by Vehicle and Drivetrain
  • 15.6. Total Motor Market Size Forecast by Vehicle and Drivetrain
  • 15.7. Automotive Electric Motor Forecast (Regional)
  • 15.8. Automotive Electric Motor Forecast (Drivetrain)
  • 15.9. Automotive Electric Motor Forecast (Motor Type)
  • 15.10. Automotive Electric Motor Power Forecast (Regional)
  • 15.11. Automotive Electric Motor Power Forecast (Drivetrain)
  • 15.12. Automotive Electric Motor Value $ Forecast (Drivetrain)
  • 15.13. Electric Two-wheelers Motor Forecast by Power Class
  • 15.14. LCV Electric Motor Forecast (Drivetrain)
  • 15.15. Truck Electric Motor Forecast (Drivetrain & Category)
  • 15.16. Bus Electric Motor Forecast (Drivetrain)
  • 15.17. Global HEV Car MG Demand Forecast
  • 15.18. Automotive Axial Flux Motor Forecast
  • 15.19. In-wheel Motors Forecast
  • 15.20. Materials in Motor Magnets Forecast (tonnes)
  • 15.21. Copper and Aluminium Winding Forecast (tonnes)