NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

电动汽车的电力电子技术 2022-2032年

Power Electronics for Electric Vehicles 2022-2032

出版商 IDTechEx Ltd. 商品编码 1027681
出版日期 内容资讯 英文 201 Slides
商品交期: 最快1-2个工作天内
价格
电动汽车的电力电子技术 2022-2032年 Power Electronics for Electric Vehicles 2022-2032
出版日期: 2021年09月10日内容资讯: 英文 201 Slides
简介

标题
电动汽车的电力电子技术 2022-2032年
汽车逆变器、车载充电器 (OBC)、碳化矽 (SiC) MOSFET、宽带隙 (WBG) 半导体和 800V 平台。

"下一代碳化矽 (SiC) 电力电子设备正以 27% 的复合年增长率占领电动汽车市场。"

电动汽车正席卷全球。IDTechEx 预测,未来十年电动汽车市场的复合年增长率为 25%,全球市场至少将在未来二十年保持增长。

电动汽车的出现抹杀了上个世纪的汽车工程,因为拥有数百个运动部件的内燃机正在让位于通常只有不到 20 个运动部件的电动动力系统。

电动动力总成创新的新焦点是电池、牵引电机和电力电子设备。第t echnological进步这些部件由必要改善车辆的范围,安全性,寿命,当然,可持续运输。

驱动

IDTechEx 报告 "电动汽车电力电子" 重点关注汽车电力电子的重要性,分析趋势和正在进行的潜在材料变化,以及整个价值链中创造的大量机会。

汽车电力电子:逆变器、车载充电器和 DC-DC转换器

电力电子是一种用于控制和转换电力的固态电子。对于电动汽车,它由三个关键设备组成:车载充电器、为电池充电的交直流整流器;个E逆变器,高功率的DC到AC转换器,用于将电池电力牵引电动机; 以及用于高压牵引电池的 DC-DC 转换器,为低压电池供电(用于酒店设施)。

&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&nb的藻; < i>来源:IDTechEx

最关键的是主逆变器,它以最高功率运行并促进牵引。此处的任何效率改进都可以在不改变电池容量的情况下提高车辆行驶里程。

这推动了从矽 IGBT 向碳化矽 MOSFET 的快速转变,由特斯拉领导,早在 2017 年,随著 Model 3 的发布,该公司推出了首款采用定制碳化矽 MOSFET 的汽车逆变器,其中包含铜带键合和银烧结芯片粘接浆料,来自意法半导体。

如今,碳化矽 MOSFET 的供应链增长继续滚雪球,参与者包括 ROHM Semiconductor、Cree、Denko、Infineon 、Denso、Bosch、Delphi、Vitesco(Continental)、Dana 等,扩大产能并形成伙伴关系以跟上快速的需求。该报告探讨了这些供应链动态,从半导体制造到逆变器供应商,并使用 IDTechEx 汽车模型数据库提供市场份额。

对于车载充电器,主要趋势是更高功率的运行。此处采用宽带隙 (WBG) 开关仍然很重要但不太重要,因为 OBC 不影响车辆范围。虽然 4kW 以下的车载充电器在十年前是标准配置,但在电池容量增加和对快速充电的持续需求的推动下,如今大多数新车型都配备了 6-10kW 的 OBC。

额定值更高的 OBC也很重要,因为大多数公共充电装置都是交流电,这意味著车载充电器通常会成为充电时间的瓶颈。例如,插入 22kW 交流充电器的 BMW i3 只能以 11kW 充电,因为这是其车载充电器的容量。

最终,OBC 的最终目标是 22kW,这是目前豪华电动汽车的领域,但雷诺 Zoe 等一些例外。

该报告预测了逆变器、车载充电器和 DC-DC 转换器的单位需求、GW 和市场价值(十亿美元),并按功率开关技术(SiC MOSFET、Si IGBT)和电压水平划分。

碳化矽 MOSFET、GaN HEMT 和封装材料创新

如今,矽绝缘栅双极晶体管 (IGBT) 在汽车电力电子产品中占据主导地位,但正在快速过渡到第六代宽带隙半导体:碳化矽 (SiC) 金属氧化物场效应晶体管 (MOSFET)和氮化镓 (G aN) 高电子迁移率晶体管 (HEMT)。

WBG 半导体是一项重大变革,使电力电子设备更加高效、功率密集且能够在高温下运行。这对于改善电动汽车续航里程或降低成本(通过缩小电池容量)至关重要。

由于半导体芯片不再是高温运行和使用寿命的瓶颈,封装材料创造了新的机遇。新型银烧结焊膏取代传统焊料、铜线和带状键合,以及改进的热管理系统和材料,将成为必要。

该报告预测了 2032 年宽带隙汽车电力电子产品的普及,并探讨了我们预期在包装材料中看到的趋势。

800V - 1000V 汽车

宽带隙半导体开关可实现更高效的高压操作(800V - 1000V),从而带来350kW 直流快速充电等优势。转向 800V 并不像重新布线电池那么简单:需要对电池、热管理系统、逆变器 (WBG)、电机和高压电纜进行深入的系统更改和重新设计。

尽管如此,情况正在迅速发展,至少有 10 家汽车制造商致力于开发将在 800 - 1000V 之间运行的车型和车辆平台,所有产品的发布时间表都在 2021 年 - 2025 年之间。

在接下来的几年里,800V 将主要(但不是唯一)存在于奢侈品领域,我们将其定义为起价高于 5 万美元的基本型号。转向 800V 平台并不一定保证采用碳化矽 MOSFET,但却是其强大的推动力。但是,对于924V Lucid Air 等 900V 以上的平台,碳化矽将是唯一现实的选择。

该报告通过 IDTechEx 跟踪的高压模型和平台采用自下而上的方法提供了对 800V 逆变器的预测。

< h4>来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师最多 30 分钟的电话时间,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要

  • 1.1. 报告介绍
  • 1.2. 电动汽车预测(单位销售)
  • 1.3. 电动汽车中的电力电子
  • 1.4. 宝WER电子设备范围
  • 1.5。电源开关历史
  • 1.6. 矽、碳化矽和氮化镓的基准测试
  • 1.7. 800V 和 SiC 的优势
  • 1.8。半导体含量增加
  • 1.9. 碳化矽供应链
  • 1.10. 汽车电源模块市场份额
  • 1.11. SiC MOSFET 和 Si IGBT 逆变器的电压和半导体技术预测 2022 - 2032(单位销售额)
  • 1.12。800V - 1000V 逆变器预测 (2022-2032)
  • 1.13. SiC MOSFET 和 Si IGBT 汽车电力电子预测(GW)
  • 1.14. 2022-2032 年功率水平的车载充电器预测
  • 1.15。到 2032 年的逆变器、OBC、LV 转换器预测 (GW)
  • 1.16。按设备划分的汽车电力电子市场规模(十亿美元)
  • 1.17. 按技术划分的汽车电力电子市场规模(十亿美元)
  • 1.18. 访问 IDTechEx 门户配置文件

2. 电动汽车市场

  • 2.1. 行业术语
  • 2.2. 电动汽车:典型规格
  • 2.3. 全球电动汽车市场
  • 2.4. 插电式混合动力车注定失败
  • 2.5. 电动汽车司机
  • 2.6. 电动车障碍
  • 2.7. 揭穿电动汽车的神话:排放只是转向发电?
  • 2.8. 化石燃料禁令
  • 2.9. 官方或立法的化石燃料禁令
  • 2.10. 非官方、起草或提议的化石燃料禁令
  • 2.11. 电动汽车预测(单位销售)

3. 电力电子简介

  • 3.1. 什么是电力电子?
  • 3.2. 电动汽车中的电力电子
  • 3.3. 逆变器:工作原理
  • 3.4. 全桥和半桥
  • 3.5。脉冲宽度调制
  • 3.6. 无源元件
  • 3.7. 直流链路电容器
  • 3.8. 传统电动车逆变器封装
  • 3.9. 电源开关历史
  • 3.10. 晶体管基础知识
  • 3.11. 宽带隙半导体基础知识 (1)
  • 3.12. 宽带隙半导体基础 (2)
  • 3.13. 三菱电机 SiC 器件的进步
  • 3.14. 矽、碳化矽和氮化镓的基准测试
  • 3.15。电动汽车中的 SiC MOSFET 与 GaN HEMT (1)
  • 3.16 . 电动汽车中的 SiC MOSFET 与 GaN HEMT (2)
  • 3.17. 汽车 GaN 器件供应商
  • 3.18. WBG 器件的应用摘要
  • 3.19. 半导体含量增加

4. 汽车逆变器

  • 4.1. 传统电动车逆变器封装
  • 4.2. 功率器件类型
  • 4.3. 电动汽车逆变器基准测试
  • 4.4. 逆变器封装的碳化矽尺寸减小
  • 4.5。SiC 对逆变器封装的影响
  • 4.6. 罗门碳化矽逆变器
  • 4.7. 过渡到 SiC MOSFET
  • 4.8. SiC逆变器体验曲线
  • 4.9. 碳化矽功率器件的局限性
  • 4.10。碳化矽电源路线图

5. 供应链

  • 5.1. 汽车电源模块市场份额
  • 5.2. 碳化矽供应链
  • 5.3 . 电源模块供应链与创新
  • 5.4. 碳化矽功率模块的价值链
  • 5.5。英飞凌
  • 5.6. 英飞凌碳化矽路线图
  • 5.7. 英飞凌的 HybridPACK 被多家制造商使用
  • 5.8。现代 E-GMP
  • 5.9. 现代E-GMP 800V 逆变器供应商
  • 5.10. 罗姆半导体 (1)
  • 5.11. 罗姆半导体 (2)
  • 5.12。罗姆半导体 (3)
  • 5.13. 意法半导体
  • 5.14。德尔福科技(博格华纳)
  • 5.15。Cree Wolfspeed 650V MOSFET
  • 5.16。V olvo重型的SiC逆变器
  • 5.17。其他 SiC 逆变器项目和公告
  • 5.18。福特和博格华纳
  • 5.19. 福特和舍弗勒
  • 5.20。FCA (1)
  • 5.21。FCA (2)
  • 5.22。洛兹敦汽车公司
  • 5.23。通用汽车
  • 5.24。雪佛兰螺栓电源模块
  • 5.25。Chevy Bolt 电源模块(由 LG Electronics/Infineon 提供)
  • 5.26。GM:Ultium 平台
  • 5.27。奥迪 e-tron 2018
  • 5.28。德尔福、克里、橡树岭国家实验室和沃尔沃

6. 包装材料与创新
  • 6.1. 世代电源模块封装
  • 6.2. 传统功率模块封装
  • 6.3. 模组封装材料尺寸
  • 6.4. 銲线
  • 6.5。铝銲线:一个常见的故障点
  • 6.6. 芯片和基板连接是常见的故障模式
  • 6.7. 先进的引线键合技术
  • 6.8. 直接引线键合(三菱)
  • 6.9. 特斯拉的 SiC 封装
  • 6.10. 实践:减少碳化矽芯片面积
  • 6.11. 特斯拉逆变器横截面
  • 6.12. 超越铝引线键合的技术演进
  • 6.13. 底板、散热器、封装材料
  • 6.14. 英飞凌
  • 6.15。大陆/捷豹路虎
  • 6.16. 日产聆风定制设计
  • 6.17。焊接/芯片贴装技术的选择
  • 6.18。结温升高
  • 6.19。芯片贴装技术趋势
  • 6.20。银烧结膏的出现
  • 6.21。银烧结膏性能
  • 6.22。银 (Ag) 烧结:作为附著材料的多功能性
  • 6.23。特斯拉电力电子的演进

7. 基材

  • 7.1. 陶瓷基板技术的选择
  • 7.2. AlN:克服其机械弱点

8. 基板金属化的方法

  • 8.1. 金属化方法:DPC、DBC、AMB 和厚膜金属化
  • 8.2. 直接镀铜 (DPC):优点和缺点
  • 8.3. 双键合铜 (DBC):优点和缺点
  • 8.4. 活性金属釬焊 (AMB):优点和缺点
  • 8.5。陶瓷:CTE 不匹配
  • 8. 6. 多层印刷电路板
  • 8.7. 日产聆风逆变器PCB

9. 电力电子冷却和热管理

  • 9.1. 电动汽车热管理简介
  • 9.2. 主动与被动冷却
  • 9.3. 液体库尔玲
  • 9.4. 制冷剂冷却
  • 9.5。冷却策略 热性能
  • 9.6. 冷却方式分析
  • 9.7. 电力电子冷却
  • 9.8. 多个组件的最佳温度
  • 9.9. 为什么在功率模块中使用 TIM?
  • 9 .10。为什么要消除 TIM?
  • 9.11。导热油脂:其他缺点
  • 9.12。是否已在任何 EV 逆变器模块中消除了 TIM?
  • 9.13。双面冷却
  • 9.14。特斯拉 Model 3 2018 液冷
  • 9.15。日产Leaf液体冷却
  • 9.16。Jaguar I-PACE 2019 (Continental) 液冷

10。电源模块 2004-2016

  • 10.1. 丰田普锐斯 2004-2010
  • 10.2. BWM i3(英飞凌)
  • 10.3. 2008年雷克萨斯
  • 10.4. 丰田普锐斯 2010-2015
  • 10.5。日产聆风 2012
  • 10.6. 雷诺佐伊 2013 (Continental)
  • 10.7. 本田雅阁 2014
  • 10.8。本田飞度(三菱)
  • 10.9. 丰田普锐斯 2016 年起
  • 10.10. 雪佛兰 Volt 2016(德尔福)
  • 10.11。凯迪拉克 2016(日立)
  • 10.12。制造工艺

11。车载充电器

  • 11.1. 板载充电器基础知识
  • 11.2. 板载充电器电路
  • 11.3. 特斯拉车载充电器/DC DC 转换器
  • 11.4. 特斯拉碳化矽 OBC
  • 11.5。2022-2032 年功率水平的车载充电器预测

12。800-1000V汽车

  • 12.1. 按电压等级划分的历史 BEV 销量
  • 12.2. 800V平台公告
  • 12.3. 为什么要迁移到 800+ V?
  • 12.4. 需要350kW吗?
  • 12.5。慢速交流充电器占主导地位
  • 12.6。转向 800V 需要深入的系统更改
  • 12.7. 不同规模的快速充电
  • 12.8。为什么不能对锂离子电池进行快速充电?
  • 12.9。物质层面的限速因素
  • 12.10。快速充电设计层次-杠杆PUL升
  • 12.11。保时捷 Taycan 和特斯拉快速充电比较
  • 12.12。800V - 1000V 逆变器预测 (2022 - 2032)
  • 12.13。结论

13。预测

  • 13.1. 道路电动汽车预测(车辆)
  • 13.2. 每个汽车预测的逆变器
  • 13.3. 每辆车有多个电机/逆变器
  • 13.4. SiC MOSFET 和 Si IGBT 逆变器的电压和半导体技术预测 2022 - 2032(单位销售额)
  • 13.5。800V - 1000V 逆变器预测 (2022 - 2032)
  • 13.6. SiC MOSFET 和 Si IGBT 汽车电力电子预测 (GW)
  • 13.7. 2022-2032 年功率水平的车载充电器预测
  • 13.8. 到 2032 年的逆变器、OBC、LV 转换器预测 (GW)
  • 13.9. 按设备划分的汽车电力电子市场规模(十亿美元)
  • 13.10。按技术划分的汽车电力电子市场规模(十亿美元)
  • 13.11。方法
  • 13.12. 逆变器、OBC 和转换器成本假设(每千瓦美元)
目录
Product Code: ISBN 9781913899691

Title:
Power Electronics for Electric Vehicles 2022-2032
Automotive Inverters, Onboard Chargers (OBC), Silicon Carbide (SiC) MOSFETs, Wide-bandgap (WBG) Semiconductors & 800V Platforms.

"Next-gen silicon-carbide (SiC) power electronics devices are taking over EV markets at 27% CAGR."

Electric vehicles are taking the world by storm. IDTechEx predicts 25% CAGR for the electric car market over the next decade, and growth for at least two decades in markets globally.

The emergence of electric vehicles erases the last century of automotive engineering as internal-combustion engines, with hundreds of moving parts, are giving way to an electric powertrain with typically under 20 moving parts.

The new focal points of innovation in electric powertrains are batteries, traction motors and power electronics. The technological advancements for these components are driven by the need for improved vehicle range, safety, lifetime and, of course, sustainable transportation.

The IDTechEx report 'Power Electronics for Electric Vehicles' focuses on the importance of automotive power electronics, analyzing the trends and underlying materials changes underway, alongside the massive opportunities being created throughout the value chain.

Automotive Power Electronics: Inverters, Onboard Chargers & DC-DC Converters

Power electronics is a type of solid-state electronics for controlling and converting power. For electric vehicles, it comprises of three key devices: the onboard charger, an AC - DC rectifier to charge the battery; the inverter, a high-power DC to AC converter for the battery to power the traction motor; and a DC-DC converter for the high-voltage traction battery to power a low-voltage battery (for hotel facilities).

                        Source: IDTechEx

Most critical of all is the main inverter, which operates at the highest power and facilitates traction. Any efficiency improvements here improve vehicle range without altering the battery capacity.

This is driving a rapid transition from silicon IGBTs towards silicon carbide MOSFETs, led by Tesla, which, back in 2017 with the release of the Model 3, introduced the first automotive inverter with custom silicon carbide MOSFETs incorporating copper ribbon-bonding and silver-sintered die-attach pastes, sourced from STMicroelectronics.

Today, growth in the supply chain for silicon carbide MOSFETs continues to snowball, with players including ROHM Semiconductor, Cree, Denko, Infineon, Denso, Bosch, Delphi, Vitesco (Continental), Dana and more, expanding production capacity and forming partnerships to keep up with the rapid demand. The report explores these supply chain dynamics, from semiconductor fabrication to inverter suppliers, and provides market shares using the IDTechEx cars model database.

For onboard chargers, the main trend is towards higher power operation. Here adoption of wide bandgap (WBG) switches is still important but less critical, as the OBC does not affect vehicle range. While onboard chargers under 4kW were the standard a decade ago, today most new models are arriving with 6 - 10kW OBCs, driven by battery capacity increases and the continuous demand for faster charging.

Higher rated OBCs are also important because most public charging installations are AC, meaning the onboard charger often acts as a bottleneck for charging times. For example, a BMW i3 plugged in to a 22kW AC charger will only charge at 11kW, because this is the capacity of its onboard charger.

Eventually, the endgame for OBCs is 22kW, which is currently the domain of luxury electric vehicles, with some exceptions like the Renault Zoe.

The report forecasts inverters, onboard chargers and DC-DC converters in unit demand, GW and market value ($ billion) with splits by power switch technology (SiC MOSFET, Si IGBT) and voltage level.

Silicon carbide MOSFETs, GaN HEMTs and package material innovations

Today, silicon insulated-gate bipolar transistors (IGBTs) are dominant in automotive power electronics, but a rapid transition is underway to a sixth generation of wide bandgap semiconductors: silicon carbide (SiC) metal oxide field effect transistors (MOSFETs) and gallium nitride (GaN) high electron mobility transistors (HEMTs).

WBG semiconductors are a step-change, making power electronics devices vastly more efficient, power dense and capable of high temperature operation. This will become crucial for improvements to either electric vehicle range or cost reduction (by downsizing battery capacity).

As the semiconductor dies are no longer the bottleneck for high temperature operation and lifetime, new opportunities are created in the packaging materials. Novel silver-sintered pastes replacing conventional solders, copper wire and ribbon bonds, and improved thermal management systems and materials, will become necessary.

The report forecasts uptake of wide-bandgap automotive power electronics though 2032 and explores the resulting trends which we expect to see in the packaging materials.

800V - 1000V Cars

Wide-bandgap semiconductor switches are enabling more efficient high voltage operation (800V - 1000V), which brings advantages such 350kW DC fast-charging. The move to 800V is not as simple as rewiring battery cells: deep system changes and redesigns to the cells, thermal management system, inverter (WBG), motor and high voltage cabling is required.

Nonetheless, the situation is evolving rapidly, with at least ten automakers committed to models and vehicle platforms which will operate between 800 - 1000V, all with release timelines between 2021 - 2025.

800V will predominantly (but not exclusively) exist in the luxury segment for the next few years, which we define as a base model price starting above $50k. The move to 800V platforms does not necessarily guarantee adoption of silicon carbide MOSFETs but is a strong driver for it. However, for platforms above 900V like the 924V Lucid Air, silicon carbide will be the only realistic option.

The report provides forecasts for 800V-capable inverters using a bottom-up approach by the high voltage models and platforms tracked by IDTechEx.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report Introduction
  • 1.2. Electric Car Forecasts (Unit Sales)
  • 1.3. Power Electronics in Electric Vehicles
  • 1.4. Power Electronics Device Ranges
  • 1.5. Power Switch History
  • 1.6. Benchmarking Silicon, Silicon Carbide & Gallium Nitride
  • 1.7. 800V and SiC Benefits
  • 1.8. Semiconductor Content Increased
  • 1.9. SiC Supply Chain
  • 1.10. Automotive Power Module Market Shares
  • 1.11. SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales)
  • 1.12. 800V - 1000V Inverter Forecast (2022-2032)
  • 1.13. SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW)
  • 1.14. Onboard Charger Forecast by Power Level 2022- 2032
  • 1.15. Inverter, OBC, LV Converter Forecast (GW) to 2032
  • 1.16. Automotive Power Electronics Market Size by Device ($ bn)
  • 1.17. Automotive Power Electronics Market Size by Technology ($ bn)
  • 1.18. Access to IDTechEx Portal Profiles

2. ELECTRIC CAR MARKETS

  • 2.1. Industry Terms
  • 2.2. Electric Vehicles: Typical Specs
  • 2.3. The Global Electric Car Market
  • 2.4. Plug-in Hybrids Doomed
  • 2.5. Electric Vehicle Drivers
  • 2.6. Electric Vehicle Barriers
  • 2.7. Debunking EV Myths: Emissions Just Shift to Electricity Generation?
  • 2.8. Fossil Fuel Bans
  • 2.9. Official or Legislated Fossil Fuel Bans
  • 2.10. Unofficial, Drafted or Proposed Fossil Fuel Bans
  • 2.11. Electric Car Forecasts (Unit Sales)

3. INTRODUCTION TO POWER ELECTRONICS

  • 3.1. What is Power Electronics?
  • 3.2. Power Electronics in Electric Vehicles
  • 3.3. Inverters: Working Principle
  • 3.4. Full Bridge & Half Bridge
  • 3.5. Pulse Width Modulation
  • 3.6. Passive Components
  • 3.7. DC Link Capacitors
  • 3.8. Traditional EV Inverter Package
  • 3.9. Power Switch History
  • 3.10. Transistor Basics
  • 3.11. Wide bandgap Semiconductor Basics (1)
  • 3.12. Wide-bandgap Semiconductor Basics (2)
  • 3.13. Mitsubishi Electric SiC Device Advancement
  • 3.14. Benchmarking Silicon, Silicon Carbide & Gallium Nitride
  • 3.15. SiC MOSFETs Vs GaN HEMTs in EV (1)
  • 3.16. SiC MOSFETs Vs GaN HEMTs in EV (2)
  • 3.17. Automotive GaN Device Suppliers
  • 3.18. Applications Summary for WBG Devices
  • 3.19. Semiconductor Content Increased

4. AUTOMOTIVE INVERTERS

  • 4.1. Traditional EV Inverter Package
  • 4.2. Power Device Types
  • 4.3. Electric Vehicle Inverter Benchmarking
  • 4.4. Silicon Carbide Size Reductions to Inverter Package
  • 4.5. SiC Impact on the Inverter Package
  • 4.6. Rohm Silicon Carbide Inverters
  • 4.7. The Transition to SiC MOSFETs
  • 4.8. SiC Inverter Experience Curve
  • 4.9. Limitations of SiC Power Devices
  • 4.10. SiC Power Roadmap

5. SUPPLY CHAIN

  • 5.1. Automotive Power Module Market Shares
  • 5.2. SiC Supply Chain
  • 5.3. Power Module Supply Chain & Innovations
  • 5.4. Value chain for SiC power modules
  • 5.5. Infineon
  • 5.6. Infineon Silicon Carbide Roadmap
  • 5.7. Infineon's HybridPACK is used by Multiple Manufacturers
  • 5.8. Hyundai E-GMP
  • 5.9. Hyundai E-GMP 800V Inverter Suppliers
  • 5.10. ROHM Semiconductor (1)
  • 5.11. ROHM Semiconductor (2)
  • 5.12. ROHM Semiconductor (3)
  • 5.13. STMicroelectronics
  • 5.14. Delphi Technologies (BorgWarner)
  • 5.15. Cree Wolfspeed 650V MOSFET
  • 5.16. Volvo Heavy Duty SiC Inverter
  • 5.17. Other SiC Inverter Projects & Announcements
  • 5.18. Ford and BorgWarner
  • 5.19. Ford and Schaeffler
  • 5.20. FCA (1)
  • 5.21. FCA (2)
  • 5.22. Lordstown Motors
  • 5.23. General Motors
  • 5.24. Chevy Bolt Power Module
  • 5.25. Chevy Bolt Power Module (by LG Electronics / Infineon)
  • 5.26. GM: Ultium Platform
  • 5.27. Audi e-tron 2018
  • 5.28. Delphi, Cree, Oak Ridge National Laboratory and Volvo

6. PACKAGE MATERIALS & INNOVATIONS

  • 6.1. Power Module Packaging Over the Generations
  • 6.2. Traditional Power Module Packaging
  • 6.3. Module Packaging Material Dimensions
  • 6.4. Wirebonds
  • 6.5. Al Wire Bonds: A Common Failure Point
  • 6.6. Die and Substrate Attach are Common Failure Modes
  • 6.7. Advanced Wirebonding Techniques
  • 6.8. Direct Lead Bonding (Mitsubishi)
  • 6.9. Tesla's SiC package
  • 6.10. In Practice: SiC Die Area Reduction
  • 6.11. Tesla Inverter Cross-section
  • 6.12. Technology Evolution Beyond Al Wire Bonding
  • 6.13. Baseplate, Heat Sink, Encapsulation Materials
  • 6.14. Infineon
  • 6.15. Continental / Jaguar Land Rover
  • 6.16. Nissan Leaf Custom Design
  • 6.17. The Choice of Solder / Die-attach Technology
  • 6.18. Junction Temperature Increasing
  • 6.19. Die Attach Technology Trends
  • 6.20. Silver Sintered Pastes Emerging
  • 6.21. Silver-Sintered Paste Performance
  • 6.22. Silver (Ag) Sintering: Versatility as an Attach Material
  • 6.23. Evolution of Tesla's Power Electronics

7. SUBSTRATES

  • 7.1. The Choice of Ceramic Substrate Technology
  • 7.2. AlN: Overcoming its Mechanical Weakness

8. APPROACHES TO SUBSTRATE METALLISATION

  • 8.1. Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation
  • 8.2. Direct Plated Copper (DPC): Pros and Cons
  • 8.3. Double Bonded Copper (DBC): Pros and Cons
  • 8.4. Active Metal Brazing (AMB): Pros and Cons
  • 8.5. Ceramics: CTE Mismatch
  • 8.6. Multi-layered Printed Circuit Boards
  • 8.7. Nissan Leaf Inverter PCB

9. POWER ELECTRONICS COOLING & THERMAL MANAGEMENT

  • 9.1. Introduction to EV Thermal Management
  • 9.2. Active vs Passive Cooling
  • 9.3. Liquid Cooling
  • 9.4. Refrigerant Cooling
  • 9.5. Cooling Strategy Thermal Properties
  • 9.6. Analysis of Cooling Methods
  • 9.7. Power Electronics Cooling
  • 9.8. Optimal Temperatures for Multiple Components
  • 9.9. Why use TIM in Power Modules?
  • 9.10. Why the Drive to Eliminate the TIM?
  • 9.11. Thermal Grease: Other Shortcomings
  • 9.12. Has TIM Been Eliminated in any EV Inverter Modules?
  • 9.13. Double-sided Cooling
  • 9.14. Tesla Model 3 2018 Liquid Cooling
  • 9.15. Nissan Leaf Liquid Cooling
  • 9.16. Jaguar I-PACE 2019 (Continental) Liquid Cooling

10. POWER MODULES 2004-2016

  • 10.1. Toyota Prius 2004-2010
  • 10.2. BWM i3 (by Infineon)
  • 10.3. 2008 Lexus
  • 10.4. Toyota Prius 2010-2015
  • 10.5. Nissan Leaf 2012
  • 10.6. Renault Zoe 2013 (Continental)
  • 10.7. Honda Accord 2014
  • 10.8. Honda Fit (by Mitsubishi)
  • 10.9. Toyota Prius 2016 onwards
  • 10.10. Chevrolet Volt 2016 (by Delphi)
  • 10.11. Cadillac 2016 (by Hitachi)
  • 10.12. Manufacturing Process

11. ONBOARD CHARGERS

  • 11.1. Onboard Charger Basics
  • 11.2. Onboard Charger Circuits
  • 11.3. Tesla Onboard Charger / DC DC converter
  • 11.4. Tesla SiC OBC
  • 11.5. Onboard Charger Forecast by Power Level 2022- 2032

12. 800-1000V CARS

  • 12.1. Historic BEV Sales by Voltage Level
  • 12.2. 800V Platform Announcements
  • 12.3. Why move to 800+ V?
  • 12.4. Is 350kW Needed?
  • 12.5. Slow AC Chargers Dominate
  • 12.6. Moving to 800V Requires Deep System Changes
  • 12.7. Fast Charging at Different Scales
  • 12.8. Why can't you just fast charge Li-ion?
  • 12.9. Rate limiting factors at the material level
  • 12.10. Fast charge design hierarchy - levers to pull
  • 12.11. Porsche Taycan & Tesla Fast Charge Comparison
  • 12.12. 800V - 1000V Inverter Forecast (2022 - 2032)
  • 12.13. Conclusions

13. FORECASTS

  • 13.1. On-road Electric Vehicle Forecasts (Vehicles)
  • 13.2. Inverters per Car Forecast
  • 13.3. Multiple Motors / Inverters per Vehicle
  • 13.4. SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales)
  • 13.5. 800V - 1000V Inverter Forecast (2022 - 2032)
  • 13.6. SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW)
  • 13.7. Onboard Charger Forecast by Power Level 2022- 2032
  • 13.8. Inverter, OBC, LV Converter Forecast (GW) to 2032
  • 13.9. Automotive Power Electronics Market Size by Device ($ bn)
  • 13.10. Automotive Power Electronics Market Size by Technology ($ bn)
  • 13.11. Methodology
  • 13.12. Inverter, OBC & Converter Cost Assumption ($ per kW)