表纸
市场调查报告书
商品编码
1027680

印刷和柔性传感器2022-2032年:技术、参与者、市场

Printed and Flexible Sensors 2022-2032: Technologies, Players, Markets

出版日期: | 出版商: IDTechEx Ltd. | 英文 468 Slides | 商品交期: 最快1-2个工作天内

价格
  • 全貌
  • 简介
  • 目录
简介

标题
印刷和柔性传感器2022-2032年:技术、参与者、市场
印刷传感器市场,包括生物传感器、有机光电探测器、皮肤贴片和医疗电极、力和压阻传感器、压电、温度、电容式触摸传感器、可拉伸应变传感器。

"到 2032 年,对连接传感器网络的需求将推动印刷传感器市场达到 49 亿美元。"

印刷传感器是一种快速发展的技术,可提供低成本处理、靈活的薄膜外形和大面积传感,使其适用于物联网 (IoT)、工业 4.0、持续健康等新兴应用监控等。这份市场研究报告涵盖了印刷光电探测器、压阻和压电压力传感器、应变传感器、温度传感器、印刷电极、生物传感器和电容式触摸传感器的技术和应用。

印刷和柔性传感器构成了除显示器之外最大的印刷电子市场。事实上,我们预测,到2032 年,全打印传感器的市场将达到 49 亿。尽管其最大的市场——印刷葡萄糖试纸——采用连续葡萄糖监测 (CGM) 方法持续取代,但这种情况还是会发生。因此,许多新应用程序和技术的兴起推动了市场增长。

这份报告涵盖了整个印刷和靈活的传感器领域。更具体地说,它涵盖:

  • 压阻式传感器
  • 压电传感器
  • 印刷光电探测器
  • 温度传感器
  • 应变传感器
  • 电容式触摸传感器
  • 气体传感器
  • 生物传感器
  • 柔性可穿戴电极

我们还提供了多参数传感器的案例研究,这些传感器利用了多个解决方案处理功能的能力,可以并行打印或层压打印。印刷传感器当然需要读出机制以及天线和电源,因此我们将印刷传感器集成到新兴的柔性混合电子 (FHE) 制造方法中。

新兴应用的增长

印刷传感器涵盖各种技术和应用,从图像传感器到可穿戴电极。每个传感器类别都力求提供优于现有技术的独特价值主张,并在广泛采用的过程中面临不同的技术和商业挑战。

图 1
印刷/柔性传感器有多种应用,
包括持续健康监测和智能建筑。

尽管存在这种多样性,但仍有多种因素在推动采用多种类型的印刷/柔性传感器。最重要的是越来越多地采用 "物联网" 和 "工业 4.0" ,因为它们将需要由通常无线连接的低成本和不显眼的传感器组成的广泛网络。此外,印刷/柔性传感器的薄膜外形和保形性使它们能够集成到更小的设备中,从而为设计人员提供更多的自由来区分他们的产品和潜在的新用例。

薄膜光电探测器

基于印刷有机光电二极管 (OPD) 的大面积图像传感器是一项创新技术,代表了对基于 CMOS 的传统图像检测的彻底改变。它的关键价值主张是能够以比现有方法便宜得多的成本制造跨越大面积的传感器,以及薄膜柔性外形。在大面积上检测光,而不是在单个小检测器上,对于获取生物特征数据和皮肤成像(如果靈活的话)是非常理想的。挑战在于光线很容易聚焦,而传统的图像传感器既便宜又成熟。

压阻式传感器

印刷压阻力传感器是一项长期应用,如今广泛用于汽车占用传感器、乐器、工业设备和一些医疗设备。虽然这些市场有些商品化,但该行业正在创新以获取新的、差异化的、更高价值的应用。

一个例子是 3D 触摸面板,它可以测量作为功能位置的作用力,从而能够识别复杂的 HMI 手势,而不是现有的电容式触摸面板。供应商继续瞄准手机、电脑游戏和汽车内饰。

区分压阻传感器的挑战在于,许多应用不需要复杂的功能,例如 3D 触摸或接近感应。□他比较低的技术复杂性也可能意味著进入和价值获取门槛低。这正在说服一些公司在价值链中走上更高的位置,例如提供包含触觉的更多集成解决方案。

压电传感器

压电传感器会根据施加的力产生电压,而不是改变其电阻。虽然与压阻式传感器一样,它们可用于力感测,但它们的制造成本更高且集成起来更不简单。因此,制造商的主要目标是利用其独特功能(特别是对高频振动的敏感性)的应用。

印刷压电传感器的商业困难在于它们的能力介于两种简单的成熟技术之间:经济实惠的压阻式压力传感器和靈敏的刚性陶瓷压电传感器。然而,薄膜压电传感器非常适合一些相对小众的应用领域,例如结构健康和工业状态监测。

电容式触摸传感器

电容式触摸传感器已经完善并广泛用于智能手机和平板电脑等透明触摸传感器。然而,在所使用的透明导电材料、在大面积显示器上感应触摸的能力以及电容感应的替代应用(如泄漏检测和交互式表面)方面,电容式触摸仍有很大的创新空间。

氧化铟锡 (ITO) 是占主导地位的透明导电薄膜,但具有多种缺点,包括靈活性有限、导电率与透明度之比有限,以及受铟价格和供应链影响。新兴的溶液可加工替代品包括银纳米线、碳纳米管和印刷金属网。尽管挑战与 ITO 缺乏雾度和惯性的既定但技术上较差的方法相匹配,替代材料终于在柔性或 3D 形状物体、大面积多点触控电容式触摸屏中找到了市场,甚至现在有时在低成本触摸中屏幕。电容式触摸传感器市场中的另一项重大创新是电流模式传感器读数,它既降低了透明导电膜的导电性要求,又显著提高了靈敏度。

电容应变传感器

多年来,已经开发并商业化了各种部分或完全印刷的可拉伸应变传感器。事实证明,基础技术演示相对容易,但并非每个供应商都能以更低的成本成功过渡到大批量生产。

主要挑战是柔性应变传感器通常不会取代现有产品,这意味著需要开发全新的市场。为了应对这一挑战并获得更多价值,许多供应商提供垂直整合的 "解决方案" 。一个例子是 "智能手套" ,它可以比相机更准确地实时跟踪手和手指的运动——它们甚至可以结合触觉反馈进行训练。在工业位移传感、可穿戴电子产品和连续患者监测方面经过多年的发展机会,现在正在出现。

温度传感器

印刷也可用于制造温度传感器,使用含有矽纳米颗粒或碳纳米管的复合油墨。鉴于温度测量需要良好的热接触,基于保形基板的传感器似乎可以提供明确的价值主张。

他们的主要挑战是成本低、重量轻且非常成熟的解决方案(例如热敏电阻和电阻温度检测器)的普遍性。因此,印刷温度传感器具有最明确的价值主张应用,需要使用保形阵列的空间分辨率,例如监测伤口或皮肤不适。电动汽车中的电池监测是另一个备受关注的极具前景的应用,其主要吸引力在于重量轻且易于与软包电池集成。

气体和湿度传感器

气体和湿度传感器也可以打印,但目前大多数是由陶瓷而不是有机材料制成。其中一些陶瓷被印刷为具有非常高固化温度的 "厚膜" ,使它们与柔性基板不兼容。新兴方法基于功能化碳纳米管和其他有机半导体。多个属性略有不同的传感器可以组合起来形成一个 "电子鼻" ,它们的复合输出对每个分析物显示出不同的 "指纹" 。

气体传感器已经在许多工业环境中使用,随著人们对空气污染的担忧日益增加,这些传感器可能会越来越多地被采用。与某些行业不同,靈敏度和分析物存在很大差异化空间,导致市场分散。印刷气体传感器提供独特功能的另一个有前途的长期应用是直接印刷到食品包装上以测量食品降解。然而,这可能需要开发靈活的混合电子设备,以通过连续制造以及靈活 I C等使能技术的开发来使这种能力具有成本效益。

生物传感器

按收入和数量计算,最大的印刷传感器类别是印刷生物传感器,主要是葡萄糖试纸。年需求量达数十亿。然而,由于越来越多地采用对患者友好的连续血糖监测,使用量正在逐渐下降,这一趋势将继续增长。与此同时,由于监管机构试图抑制测试价格并因此侵蚀了利润率,因此出现了巨大的价格压力和商品化。尽管如此,这仍然是印刷和柔性传感器领域中销量和收入最大的业务。重要的是,印刷生物传感器不仅限于葡萄糖传感,其他传感器阵列也在不断涌现。

我们耕种电极

今天,大多数内侧电极包括带有电解凝胶的金属卡扣,但这些只能短时间使用。对于连续监测,印刷电极正逐渐被用于皮肤贴片,因为它们的使用寿命更长,可以与导电互连(也印刷)一起集成到产品中并且是柔性的。可穿戴电极也非常适合健身环境,并已集成到电子纺织品中,以舒适的方式监测心率。随著持续监测软件的发展,印刷可穿戴电极的医疗和健身应用可能会增加,从而产生更大的需求,尽管电子纺织品的耐用性仍然是消费者关注的问题。

概述

十多年来,IDTechEx 一直在研究新兴的印刷电子市场,早在 2012 年就发布了我们的第一份印刷和柔性传感器报告。从那时起,我们一直密切关注技术和市场发展,采访全球主要参与者,参加许多会议,提供多个咨询项目,并举办有关该主题的课程和研讨会。本报告中包含的 50 多家公司的详细资料证明了我们洞察力的深度和广度确实无与伦比。

本报告非常详细地讨论了这些印刷传感器类别中的每一个,评估了不同的技术和采用的挑战。我们还为每个技术和应用领域制定了 10 年市场预测,按收入和印刷传感器领域划分。

来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师的长达 30 分钟的电话时间,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要

  • 1.1. 印刷和柔性传感器简介
  • 1.2. 印刷/柔性传感器的主要市场
  • 1.3. 工业 4.0 需要印刷传感器
  • 1.4. 印刷传感器在环境和农业监测中的增长机会
  • 1.5。转向持续的医疗保健监测为印刷/柔性传感器创造了机会
  • 1.6。满足应用要求:现任技术VS印刷/柔性传感器
  • 1.7. 整体印刷传感器的整体SWOT 分析
  • 1.8。波特斯对整体印刷传感器市场的五力分析
  • 1.9. 关键要点 - 整体印刷/柔性传感器
  • 1.10. 关键要点 - 特定的印刷/柔性传感器类型
  • 1.11. 回顾之前的印刷/柔性传感器报告(2020-2030)
  • 1.12。印刷压阻传感器的增长领域
  • 1.13. 印刷温度传感器的机遇
  • 1.14. 薄膜光电探测器概述
  • 1.15。机会印刷气体蟾酥RS
  • 1.16。电容应变传感器的机会。
  • 1.17. 葡萄糖试纸:一个庞大但不断下滑的市场
  • 1.18。印刷可穿戴式电极传感器:机遇在医疗保健和健康监测。
  • 1.19. 多功能印刷/柔性传感器是一种很有前途的方法。
  • 1.20。印刷传感器应用需要靈活的混合电子设备(FHE 电路)
  • 1.21. 每个印刷传感器类别的 SWOT 分析

2. 市场预测

  • 2.1. 市场预测方法
  • 2.2. 预测不连续技术采用的困难
  • 2.3. 按传感器类型划分的 10 年整体印刷/柔性传感器预测(收入,百万美元)
  • 2.4. 不包括生物传感器的传感器类型的10 年整体印刷/柔性传感器预测(收入,百万美元)
  • 2.5. 10 年压阻传感器应用预测(体积,m2)
  • 2.6. 10 年印刷压阻传感器应用预测(收入,百万美元)
  • 2 .7。10 年印刷混合(电容/压阻)传感器应用预测(收入,百万美元)
  • 2.8. 10 年印刷压电传感器应用预测(体积,m2)
  • 2.9. 10 年印刷压电传感器应用预测(收入,百万美元)
  • 2.10. 10 年印刷光电探测器应用预测(体积,m2)
  • 2.11. 10 年印刷光电探测器应用预测(收入,百万美元)
  • 2.12. 按应用划分的 10 年印刷温度传感器预测(体积,m2)
  • 2.13. 按应用划分的 10 年印刷温度传感器预测(收入,百万美元)
  • 2.14. 10 年印刷应变传感器应用预测(体积,m2)
  • 2.15。10 年印刷 s列车传感器应用预测(收入,百万美元)
  • 2.16. 按技术划分的 10 年印刷气体传感器预测(体积,m2)
  • 2.17. 按技术划分的 10 年印刷气体传感器预测(收入,百万美元)
  • 2.18. 10 年印刷版湿度传感器预测(体积,m2)
  • 2.19. 10 年印刷湿度预测(收入,百万美元)
  • 2.20. 按技术预测的 10 年印刷生物传感器(体积,m2)
  • 2.21. 技术预测的 10 年印刷生物传感器(收入,百万美元)
  • 2.22. 10 年印刷可穿戴电极应用预测(体积,m2)
  • 2.23. 10 年印刷可穿戴电极应用预测(收入,百万美元)

3. 简介

  • 3.1.1. 什么是传感器?
  • 3.1.2. 传感器价值链示例:数码相机
  • 3.1.3. 什么定义了 "印刷" 传感器?
  • 3.1.4. 印刷与传统电子产品
  • 3.1.5。印刷/柔性传感器的主要市场
  • 3.1.6。工业4.0 需要印刷传感器
  • 3.1.7。印刷传感器的机遇:促进计算数据分析
  • 3.1.8。印刷传感器的机遇:人机界面 (HMI)
  • 3.1.9。人机界面 (HMI) 技术
  • 3.1.10。转向持续的医疗保健监测创造了
  • 3.1.11。印刷传感器的机遇:医疗保健
  • 3.1.12。印刷传感器在环境和农业监测中的增长机会
  • 3.1.13。印刷传感器制造
  • 3.1.14。丝网印刷、槽模印刷、凹版印刷和柔版印刷的简要概述
  • 3.1.15。数字印刷方法的简要概述
  • 3.1.16。面向卷对卷 (R2R) 打印
  • 3.1.17。卷对卷 (R2R)制造的优势
  • 3.1.18。什么比例打印?
  • 3.1.19。印刷传感器类别
  • 3.2. COVID-19 对印刷传感器市场的影响
    • 3.2.1. COVID-19 和用于智能手机的印刷传感器
    • 3.2.2. COVID-1 9 和印刷传感器的医疗应用
    • 3.2.3. COVID-19、汽车行业和印刷传感器
    • 3.2.4. COVID-19、可穿戴技术和印刷传感器
    • 3.2.5. COVID-19、物联网和印刷传感器
    • 3.2.6. COVI D-19 对印刷传感器市场的影响:结论

4. 印刷压阻式传感器

  • 4.1.1. 印刷压阻传感器:简介
  • 4.1.2. 压阻式与电容式触摸传感器
  • 4.2. 印刷压阻传感器:技术
    • 4.2.1. 什么是压阻?
    • 4.2.2. 渗透相关阻力
    • 4.2.3. 量子隧穿复合材料
    • 4.2.4. 印刷压阻式传感器:解剖学
    • 4.2.5. 预ssure传感架构
    • 4.2.6. 直通模式传感器
    • 4.2.7. 分流模式传感器
    • 4.2.8。力与阻力特性
    • 4.2.9. 执行器面积的重要性
    • 4.2.10。力敏墨水
    • 4.2.11。FSR 的完整材料组合方法
    • 4.2.12。分流模式 FSR 传感器
    • 4.2.13。压阻式传感器的 R2R 与 S2S 制造
    • 4.2.14。FSR 电路示例
    • 4.2.15。电路设计对传感器输出的影响
    • 4. 2.16. 矩阵压力传感器架构
    • 4.2.17。印刷可折叠力感测解决方案 (Peratech)
    • 4.2.18。3D 多点触控压力传感器 (Tangio)
    • 4.2.19。混合 FSR/电容式传感器
    • 4.2.20。混合 FSR/电容式传感器(Tangio)
    • 4.2.21。具有一致零位的弯曲传感器 (Tacterion)
    • 4.2.22。压阻式传感器的未来技术发展
    • 4.2.23。创新实验室:批量生产印刷传感器
  • 4.3. 印刷压阻传感器:应用
    • 4.3.1. 压阻式传感器的应用
    • 4.3.2. 印刷 FSR 的医疗应用 (Tekscan)
    • 4.3.3. 印刷 FSR 传感器的更多医疗应用 (Tekscan)
    • 4.3.4. 力传感器示例:Vista Medical
    • 4.3.5. 使用印刷压力传感器进行牙齿咬合监测(创新实验室)
    • 4.3.6. 用于智能地板和步态分析的大面积压力传感器。
    • 4.3.7。基于纺织品的印刷 FSR 应用
    • 4 .3.8。压敏织物(Vista Medical)
    • 4.3.9。用于医疗应用的压阻电子纺织品 (Sensing Tex)
    • 4.3.10。柔性压敏手套 (Tekscan)
    • 4.3.11。印刷 FSR 的消费电子应用
    • 4.3.12。智能手机中的压阻式传感器
    • 4.3.13。便携式 MIDI 控制器 - The Morph (Sensel)
    • 4.3.14。汽车占用和安全带警报传感器
    • 4.3.15。印刷压阻传感器的其他汽车应用
    • 4.3.16。ForcIOT:集成可拉伸压力传感器
    • 4.3.17。创新实验室:空间分辨柔性压力传感器
    • 4.3.18。加强社交距离的智能地毯(由于冠状病毒)
    • 4.3.19。印刷压阻传感器应用评估
  • 4.4. 印刷压阻传感器:总结
    • 4.4.1. 总结:印刷压阻传感器应用
    • 4.4.2. 印刷压阻传感器的商业模式
    • 4.4.3. 压阻式传感器的SWOT分析
    • 4.4.4. 印刷压阻传感器的就绪水平快照
    • 4.4.5。力敏电阻传感器供应商概览
    • 4.4.6. 公司简介:压阻式传感器

5. 印刷压电传感器

  • 5.1. 印刷压电传感器:技术
    • 5.1.1. 压电:简介
    • 5.1.2. 压电聚合物
    • 5.1.3. 用于传感和触觉执行器的基于 PVDF 的聚合物选项
    • 5.1.4. 低温压电墨水(Meggitt)
    • 5.1.5。压电聚合物
    • 5.1.6。印刷压电传感器
    • 5.1.7。印刷压电传感器:原型
    • 5.1.8。Pyzoflex
  • 5.2. 印刷压电传感器:应用
    • 5.2.1. 印刷压电传感器的应用
    • 5.2.2. 扬声器/麦克风中的压电执行器
    • 5.2.3. 用于工业状态监测的 PiezoPaint (Meggit)
    • 5 .2.4. 结合能量收集和传感
    • 5.2.5。VTT/坦佩雷大学:弹性电子学
    • 5.2.6. 压电传感器应用的属性重要性
  • 5.3. 印刷压电传感器:总结
    • 5.3.1. 总结:压电传感器
    • 5.3.2. 压电传感器的SWOT分析
    • 5.3.3. 印刷压电传感器的就绪水平快照
    • 5.3.4. 压电传感器供应商概览
    • 5.3.5。公司简介:压电传感器

6. 印刷光电探测器

  • 6.1.1. 薄膜光电探测器简介
  • 6.1.2. 光电探测器技术比较
  • 6.2. 印刷光电探测器:技术
    • 6.2.1 . 光电探测器工作原理
    • 6.2.2. 量化光电探测器和图像传感器的性能
    • 6.2.3. 有机光电探测器 (OPD)
    • 6.2.4. 薄膜光电探测器:优点和缺点
    • 6.2.5. 减少暗电流以增加动态范围
    • 6.2.6. 根据特定应用定制检测波长
    • 6.2.7. 将 OPD 扩展到 NIR 区域:使用空腔
    • 6.2.8。第一条OPD生产线
    • 6.2.9. 从溶液制造薄膜光电探测器的技术挑战
    • 6.2.10。薄膜光电探测器材料
    • 6.2.11。基于非晶矽的柔性图像传感器
  • 6.3. 印刷光电探测器:应用
    • 6.3.1. 用于生物识别安全的OPD
    • 6.3.2. 用于医学成像的喷涂有机光电二极管
    • 6.3.3. 带有 OPD (ISORG) 的 "显示指纹"
    • 6.3.4. 使用 TFT 有源矩阵 (ISORG) 的靈活 OPD 应用
    • 6.3.5. 使用 O PD(剑桥显示技术)进行脉搏血氧饱和度检测
    • 6.3.6. 基于钙钛矿的图像传感器(霍尔斯特中心)
    • 6.3.7。学术研究:带光电探测器的可穿戴皮肤贴片
    • 6.3.8。薄膜光电探测器应用技术要求 <我>6.3.9。薄膜 OPD 和 PPD 应用要求
    • 6.3.10。薄膜 OPD 和 PPD 的应用评估。
    • 6.3.11。采用大面积 OPD 的商业挑战
  • 6.4. 总结:印刷图像传感器
    • 6.4.1. 总结:薄膜有机和钙钛矿光电探测器
    • 6.4.2. 大面积OPD图像传感器的SWOT分析
    • 6.4.3. 印刷光电探测器的就绪水平快照
    • 6.4.4. 供应商概览:薄膜光电探测器 < li>6.4.5。公司简介:印刷图像传感器

7. 印刷温度传感器

  • 7.1.1. 引入到打印温度传感器
  • 7.1.2. 温度传感器的类型
  • 7.1.3. 比较电阻温度传感器和热敏电阻
  • 7.2. 印刷温度传感器:技术
    • 7.2.1. 用于温度传感的矽纳米粒子墨水(PST 传感器)(II)
    • 7.2.2. 印刷金属 RTD 传感器:Brewer Science
    • 7.2.3. 苏用于印刷温度传感器bstrate挑战
    • 7.2.4. 基于印刷无机 NTC 材料的温度传感器
    • 7.2.5. 喷墨打印的热和温度传感器阵列(INO - 加拿大国家光学研究所)
    • 7.2.6. 镨inted小型化铂加热器金属氧化物气体传感器(弗劳恩霍夫IKTS)
    • 7.2.7. 用于智能 RFID 传感器 (CENTI) 的印刷温度传感器
    • 7.2.8。学术研究:具有稳定 PEDOT:PSS 的印刷温度传感器
    • 7.2.9. 时间温度指示器 (TTI)
    • 7.2.10。化学 TTI
    • 7.2.11。化学时间温度指示器
    • 7.2.12。化学时间温度指示器 (TTI) 示例
  • 7.3. 印刷温度传感器:应用
    • 7.3.1. 印刷温度传感器的应用
    • 7.3.2. 电池热管理:需要最佳温度
    • 7.3.3. 电动汽车电池的温度监测加快步伐。
    • 7.3.4. 印刷温度传感器和加热器 (IEE)
    • 7.3.5. 用于电池的集成压力/温度传感器和加热器
    • 7.3.6。集成印刷电子标签的概念验证原型
    • 7.3.7。用于靈活温度SENS新应用ORS
    • 7.3.8。CNT 温度传感器(布鲁尔科学)
    • 7.3.9。可穿戴温度监测器
    • 7.3.10。温度传感器应用的属性重要性
  • 7.4. 印刷温度传感器:总结
    • 7.4.1 . 总结:印刷温度传感器
    • 7.4.2. 印刷温度传感器的 SWOT 分析
    • 7.4.3. 印刷温度传感器的技术准备水平快照
    • 7.4.4. 印刷温度传感器供应商概览
    • 7.4.5。公司简介:印刷温度传感器

8. 印刷应变传感器

  • 8.1. 印刷应变传感器:技术
    • 8.1.1. 电容应变传感器
    • 8.1.2. 使用介电电活性聚合物(EAP)
    • 8.1.3. 电阻应变传感器
    • 8.1.4. 3D 打印软电子(卡尔斯鲁厄理工学院)
    • 8.1.5。皮肤启发的电子产品(Zhenan Bao - 斯坦福大学)
  • 8.2. 印刷应变传感器:应用离子
    • 8.2.1. 应变传感器应用
    • 8.2.2. 使用电容式应变传感器 (Parker Hannifin) 进行动作捕捉
    • 8.2.3. 应变敏感电子纺织品 (Stretchsense)
    • 8.2.4. 应变敏感电子纺织品(Bando Chemical) < li>8.2.5。应变传感器电子纺织品(雅马哈和吴羽)
    • 8.2.6. 工业位移传感器(LEAP Technology)
    • 8.2.7。电阻应变传感器示例(BeBop 传感器)
    • 8.2.8。手套电阻应变传感器 (Polymatech)
  • 8.3. 印刷应变传感器:总结
    • 8.3.1. 总结:应变传感器
    • 8.3.2. 柔性应变传感器的 SWOT 分析
    • 8.3.3. 电容应变传感器的技术准备水平快照
    • 8.3.4. 印刷高应变传感器供应商概览
    • 8.3.5. 公司简介:应变传感器

9. 印刷气体传感器

  • 9.1.1. 印刷气体传感器:简介
  • 9.1.2. 气体传感器价值链
  • 9.2. 印刷气体传感器:技术
    • 9.2.1. 气体传感器行业
    • 9.2.2. 化学传感器的历史
    • 9.2.3. 向小型化气体传感器过渡
    • 9.2.4. 经典传感器与微型传感器的比较
    • 9.2.5。可检测的大气污染物浓度
    • 9.2.6. 气体传感器的五种常见检测原理
    • 9.2.7。主要可用气体传感器的靈敏度
    • 9.2.8。小型化传感器技术比较
    • 9.2.9。催化燃烧气S ensors
    • 9.2.10。金属氧化物半导体 (MOS) 气体传感器
    • 9.2.11。印刷 MOS 传感器
    • 9.2.12。丝网印刷 MOS 传感器 (Figaro)
    • 9.2.13。带有印刷电极的 MOS 气体传感器 (FIS)
    • 9.2.14。丝网印刷 MOS传感器(瑞萨电子)
    • 9.2.15。电化学 (EC) 气体传感器
    • 9.2.16。电化学气体传感器的印刷元件
    • 9.2.17。印刷传统EC气体传感器
    • 9.2.18。丝网印刷微型 EC 气体传感器 <我>9.2.19。红外线气体传感器
    • 9.2.20。电子鼻(e-Nose)
    • 9.2.21。将 "电子鼻" 与柔性 IC 集成
    • 9.2.22。基于印刷碳纳米管的气体传感器
    • 9.2.23。基于碳纳米管的气体指纹电子鼻(PARC)
    • 9.2.24。用于智能 RFID 传感器 (CENTI) 的印刷湿度传感器
    • 9.2.25。印刷湿度/水分传感器(布鲁尔科学)
    • 9.2.26。基于有机电子学的湿度传感器 (Invisense)
    • 9.2.27。用于金属氧化物气体传感器的印刷微型铂加热器 (Fraunhofer IKTS)
    • 9.2.28。通过吸附热感应 CO2
    • 9.2.29。学术研究:低成本可生物降解传感器
    • 9.2.30。学术研究:碳纳米管和催化剂感知蔬菜腐败
  • 9.3. 印刷气体传感器:应用
    • 9.3.1. 气体传感器将用于各种物联网领域
    • 9.3.2. 汽车工业中的气体传感器
    • 9.3.3. 空气质量monitori印刷气体传感器纳克
    • 9.3.4. 新兴市场:个人设备
    • 9.3.5。用于移动设备的气体传感器
    • 9.3.6. 带空气质量传感器的手机
    • 9.3.7。H2S专业气体检测仪手表
    • 9.3.8。空气质量监测的智能此贴小号
    • 9.3.9。家庭和办公室监控:互联环境
  • 9.4. 印刷气体传感器:总结
    • 9.4.1. 总结:气体传感器
    • 9.4.2. 气体传感器制造商面临的未来挑战
    • 9.4.3. 气体传感器的技术就绪水平快照
    • 9.4.4。气体传感器的SWOT分析
    • 9.4.5。供应商概览:印刷气体传感器
    • 9.4.6. 公司简介:气体传感器

10。印刷电容式传感器

  • 10.1. 小学nted电容式传感器:技术
    • 10.1.1. 电容式传感器:工作原理
    • 10.1.2. 混合电容/压阻传感器
    • 10.1.3. 用于 3D 电子产品中电容传感的金属化和材料
    • 10 .1.4. 模内电子产品与薄膜嵌件成型
    • 10.1.5。用于汽车电容传感的模内电子器件
    • 10.1.6。集成电容感应 (TG0)
    • 10.1.7。新兴电流模式传感器读数:原理
    • 10.1.8。好处电流模式电容传感器的读出的拟合
    • 10.1.9。学术研究:带有纳米压力传感器的表皮电子学
  • 10.2. 印刷电容式传感器:透明导电材料
    • 10.2.1. 透明电容式传感器的导电材料
    • 10.2.2. 不同 TCF 技术的定量对标
    • 10.2.3. 透明导电薄膜的薄层电阻与厚度
    • 10.2.4. 氧化铟锡:现任透明导电膜
    • 10.2.5。ITO薄膜缺点
    • 10.2.6. 银纳米线:简介
    • 10.2.7。Ag 雾度:展示 NW 纵横比的影响
    • 10.2.8. Ag NW 采用的前景
    • 10.2.9。金属网:光刻,然后蚀刻
    • 10.2.10。直接印刷金属网透明导电膜:性能
    • 10.2.11。直接印刷金属网透明导电膜:主要缺点
    • 10.2.12。凸版印刷的铜网透明导电膜
    • 10.2.13。Eastman Kodak:采用印刷铜金属网技术的透明超低电阻射频天线
    • 10.2.14。碳纳米管 (CNT) 简介
    • 10.2.15。碳纳米管的透明导电膜:PERF ormance
    • 10.2.16。碳纳米管透明导电薄膜:市场上商用薄膜的性能
    • 10.2.17。碳纳米管透明导电膜:匹配指数
    • 10.2.18。将 AgNW 和 CNT 结合用于 TCF 材料 (C hasm)
    • 10.2.19。PEDOT简介:PSS
    • 10.2.20。PEDOT:PSS 的性能大幅提升
    • 10.2.21。PEDOT:PSS 性能提高以匹配 ITO-on-PET
    • 10.2.22。用于柔性设备的聚塞吩基导电薄膜(贺利氏)
    • 10.2.23。技术比较
  • 10.3. 印刷电容式传感器:应用
    • 10.3.1. 电容式触摸屏上的旋转表盘(福特)
    • 10.3.2. 用于电容式触摸传感器的 PEDOT:PSS 用例示例
    • 10.3.3. 新兴的电流模式传感器读数可实现大面积触摸屏
    • 10.3.4. 包含 C3 Nano 的 AgNW 的可折叠显示器
  • 10.4. 印刷电容式传感器:总结
    • 10.4.1. 总结:电容式触摸传感器
    • 10.4.2. 摘要:透明导电材料
    • 10.4.3. 电容式触摸传感器材料和技术的就绪水平
    • 10.4.4. 电容式触摸传感器的SWOT分析
    • 10.4.5。电容式触摸传感器透明导体的SWOT 分析
    • 10.4.6。TCF 材料供应商概览
    • 10.4.7。电容式触控传感器企业(不含材料供应商)
    • 10.4.8。公司简介:电容式传感器

11。PR INTED生物传感器

  • 11.1.1. 电化学生物传感器提供了一种简单的传感机制
  • 11.2. 印刷生物传感器:技术
    • 11.2.1. 电化学生物传感器机制
    • 11.2.2. P oC电化学生物传感器中使用的□
    • 11.2.3. 电极沉积:丝网印刷与溅射
    • 11.2.4. 葡萄糖试纸的解剖结构
    • 11.2.5。打印电化学试纸的挑战
    • 11.2.6. 用于生物流体的印刷 pH 传感器
  • 11.3. 印刷生物传感器:应用
    • 11.3.1. 通过相关阅读器监测葡萄糖试纸
    • 11.3.2. 用于糖尿病管理路线图的传感器
    • 11.3.3. 总结:印刷生物传感器
    • 11.3.4. 用于糖尿病管理的印刷生物传感器简介
    • 11.3.5。CGM开始更换试纸(雅培)
    • 11.3.6。比较试纸成本与 CGM
    • 11.3.7。连续血糖监测 (CGM) 导致血糖试纸使用率下降。
    • 11.3.8。电化学传感器是一种更准确的酮监测方法
    • 11.3.9。带有印刷传感器的运动员乳酸监测
    • 11.3.10。打印的护理点胆固醇测试?
    <我>11.4。印刷生物传感器:总结
    • 11.4.1. 电化学PoC生物传感器的未来
    • 11.4.2. 印刷生物传感器的 SWOT 分析
    • 11.4.3. 印刷生物传感器的就绪水平
    • 11.4.4. 供应商概览:生物传感器
    • 11.4.5。生物传感器:公司简介

12。印刷的可穿戴电极

  • 12.1. 印刷可穿戴电极:皮肤贴片
    • 12.1.1. 印刷可穿戴电极和皮肤贴片简介 <我>12.1.2。皮肤贴片案例:改进设备外形
    • 12.1.3. 电极和皮肤贴片的应用
    • 12.1.4. 使用电极测量生物电势
    • 12.1.5。一次性金属卡扣电极——电流电极技术
    • 12.1.6。金属卡扣式 Ag/AgCl 电极的市场
    • 12.1.7。带有集成电极的皮肤贴片 - 印刷电极的机会。
    • 12.1.8。带有印刷银墨的智能贴片(Quad Industries)
    • 12.1.9。QT M edical 开发印刷电极和互连
    • 12.1.10。用于妊娠监测的印刷电极和互连(Monica Healthcare)
    • 12.1.11。柔性和可拉伸电极 (ScreenTec OY)
    • 12.1.12。GE Research:制造一次性可穿戴生命体征监测设备
    • 12.1.13。印刷无线可穿戴电极(杜邦)
    • 12.1.14。可印刷干式心电图电极 (Henkel)
    • 12.1.15。来自汉高的新型印刷电极材料
    • 12.1.16。比较印刷和金属卡扣电极的性能
    • 12.1.17。印刷干电极胶的优点
    • 12.1.18。网格印刷电极 (Nissha GSI)
    • 12.1.19。替代印刷电极材料
    • 12.1.20。John Rodgers教授(西北大学):表皮电子学
    • 12.1.21。印刷可穿戴电极:电子纺织品
  • 12.2. 电子纺织品:纺织品与电子产品相遇的地方
    • 12.2.1. 服装中的生物识别监测
    • 12.2.2. 将心率监测集成到衣服中
    • 12.2.3. 用于生物识别的智能服装中使用的传感器
    • 12.2.4. 拥有生物识别监测服装产品的公司
    • 12.2.5。纺织电极%0
目录
Product Code: ISBN 9781913899721

Title:
Printed and Flexible Sensors 2022-2032: Technologies, Players, Markets
Market for printed sensors including biosensors, organic photodetectors, skin patch and medical electrodes, force and piezoresistive sensors, piezoelectric, temperature, capacitive touch sensors, stretchable strain sensors.

"Demand for connected sensor networks will drive printed sensor market to $4.9 billion by 2032."

Printed sensors are a rapidly growing technology that offer low-cost processing, flexible thin-film form factor and large area sensing, making them suitable for emerging applications such as the Internet of Things (IoT), Industry 4.0, continuous health monitoring and more. This market research report covers the technology and applications of printed photodetectors, piezoresistive and piezoelectric pressure sensors, strain sensors, temperature sensors, printed electrodes, biosensors, and capacitive touch sensors.

Printed and flexible sensors constitute the largest printed electronics market outside of displays. Indeed, we forecast that the market for fully printed sensors will reach 4.9 billion by 2032. This takes place despite the sustained displacement of its largest market - printed glucose test strips - with continuous glucose monitoring (CGM) approaches. Market growth is therefore enabled by the rise of many new applications and technologies.

This report covers the entire printed and flexible sensor landscape. More specifically, it covers:

  • Piezoresistive sensors
  • Piezoelectric sensors
  • Printed photodetectors
  • Temperature sensors
  • Strain sensors
  • Capacitive touch sensors
  • Gas sensors
  • Biological sensors
  • Flexible wearable electrodes

We also provide case studies of multi-parameter sensors which utilize the ability of multiple solution processed functionalities to either be printed in parallel or laminated. Printed sensors of course need a readout mechanism along with antennas and a power supply, so we include the integration of printed sensors within the emerging manufacturing methodology of flexible hybrid electronics (FHE).

Growth in emerging applications

Printed sensors span a diverse range of technologies and applications, ranging from image sensors to wearable electrodes. Each sensor category seeks to offers a distinct value proposition over the incumbent technology, with distinct technological and commercial challenges on route to widespread adoption.

Figure 1:
Printed/flexible sensors have multiple applications,
including for continuous health monitoring and smart buildings.

Despite this diversity, there are multiple factors that are driving the adoption of many types of printed/flexible sensors. Most important is the increasing adoption of 'IoT' and 'Industry 4.0' since they will require extensive networks of often wirelessly connected low-cost and unobtrusive sensors. Additionally, the thin-film form factor and conformality of printed/flexible sensors enable them to be incorporated within smaller devices, thus providing increased freedom for designers to differentiate their products and potentially new use cases.

Thin film photodetectors

Large area image sensors based on printed organic photodiodes (OPDs) are an innovative technology, representing a complete change from the conventional CMOS-based image detection. Its key value propositions are the ability to make sensors that span large areas much more cheaply than incumbent approaches, and the thin-film flexible form factor. Detection of light over a large area, rather than at a single small detector, is highly desirable for acquiring biometric data and, if flexible, for imaging through the skin. The challenge is that light is easily focused and that conventional image sensors are both cheap and well established.

Piezoresistive sensors

Printed piezoresistive force sensors are a longstanding application, widely used today in car occupancy sensors, musical instruments, industrial equipment, and some medical devices. While these markets are somewhat commoditized, the sector is innovating to access new, differentiated, higher value applications.

One example is 3D touch panels that can measure applied force as a function position, thus enabling the recognition of complex HMI gestures than the incumbent capacitive touch panels. Suppliers are continuing to target phones, computer gaming and automotive interiors.

The challenge for differentiating piezoresistive sensors is that many applications do not require sophisticated functionality such as 3D touch or proximity sensing. The relatively low technology complexity can also mean that barriers to entry and the value capture are low. This is convincing some to go higher up in the value chain, offering more integrated solutions that incorporate haptics, for example.

Piezoelectric sensors

Piezoelectric sensors generate a voltage in response to an applied force, rather than changing their resistance. While, like piezoresistive sensors, they can be used for force sensing, they are more expensive to manufacture and less straightforward to integrate. As such, manufacturers are primarily targeting applications that utilize their unique capabilities, specifically their sensitivity to high frequency vibrations.

The commercial difficulty for printed piezoelectric sensors is that their capabilities lie midway between two simple established technologies: Affordable piezoresistive pressure sensors, and sensitive, rigid ceramic piezoelectric sensors. However, there are some relatively niche application areas to which thin film piezoelectric sensors are well suited, such as structural health and industrial condition monitoring.

Capacitive touch sensors

Capacitive touch sensors are well-established and widely used for transparent touch sensors such as smartphones and tablets. However, there is still extensive scope for innovation within capacitive touch in terms of the transparent conductive materials used, the ability to sense touch over large area displays, and alternative applications for capacitive sensing such as leak detection and interactive surfaces.

Indium tin oxide (ITO) is the dominant transparent conductive film, but has multiple shortcomings including limited flexibility, a limited conductivity vs transparency ratio, and exposure to the indium price and supply chain. Emerging solution processable alternatives include silver nanowires, carbon nanotubes and printed metal mesh. Despite challenges matching ITO's lack of haze and inertia of an established but technically inferior approach, alternative materials are finally finding market in flexible or 3D shaped objects, in large-area multi-touch capacitive touch screens, and even nowadays sometimes in lower cost touch screens. Another significant innovation within the capacitive touch sensor market is current-mode sensor readout, which both reduces the conductivity requirements of the transparent conductive film and dramatically increased sensitivity.

Capacitive strain sensors

Various partially or fully printed stretchable strain sensors have been developed and commercialized over the years. Basic technology demonstration has proved relatively easy, but not every supplier has succeeded in transitioning to large-volume capability with at lower costs.

The main challenge has been that flexible strain sensors are generally not replacing an existing product, meaning that completely new markets need to be developed. To address this challenge and to capture more value, many suppliers offer vertically integrated 'solutions'. One example is 'smart gloves' that track the movement of the hands and fingers in real time with more accuracy than cameras - they can even be combined with haptic feedback for training purposes. After years of development opportunities in industrial displacement sensing, in wearable electronics, and in continuous patient monitoring are now emerging.

Temperature sensors

Printing can also be used to create temperature sensors, using either a composite ink with silicon nanoparticles or carbon nanotubes. Given that temperature measurement requires good thermal contact, sensors based on conformal substrates might seem to offer a clear value proposition.

Their main challenge is the low cost, light weight, and ubiquity of very mature solutions such as thermistors and resistive temperature detectors. As such, printed temperature sensors have the clearest value proposition applications that require spatial resolution using conformal array, such as monitoring wounds or skin complaints. Monitoring batteries in electric vehicles is another highly promising application that is receiving increased interest, with the light weight and ease of integration with pouch cells the main attractions.

Gas and humidity sensors

Gas and humidity sensors can also be printed, although at present most are made from ceramics rather than organic material. Some of these ceramics are printed as a 'thick film' with very high curing temperatures, rendering them incompatible with flexible substrates. Emerging approaches are based around functionalized carbon nanotubes and other organic semiconductors. Multiple sensors with slightly different properties can be combined to form an 'electronic nose', with their composite output exhibiting a different 'fingerprint' for each analyte.

Gas sensors are already used in many industrial contexts and are likely to be increasingly adopted as concern about air pollution grows. Unlike some sectors, there is substantial scope for differentiation by sensitivity and analyte, leading to a fragmented market. Another promising long-term application in which printed gas sensors offer unique capability is directly printing onto food packaging to measure food degradation. However, this will likely require the development of flexible hybrid electronics to make such capability cost-effective via continuous manufacturing, along with the development of enabling technologies such as flexible ICs.

Biosensors

The largest category of printed sensors by revenue and volume is printed biosensors, dominated by glucose test strips. The annual demand is in the billions. However, use is gradually declining due to the growing adoption of patient-friendly continuous glucose monitoring, a trend that will continue to grow. In parallel, there have been significant price pressures and commoditization as regulators have sought to supress the test prices and in doing so eroded the margins. Despite all this, this remains the largest volume and revenue business in the printed and flexible sensor landscape. Importantly, printed biosensors are not constrained to glucose sensing and an array of other sensors are emerging.

Wearable electrodes

Today, most medial electrodes comprise a metal snap fastening with an electrolytic gel, but these can only be used for short periods. For continuous monitoring, printed electrodes are gradually being adopted into skin patches, since they last longer, can be integrated into a product together with conductive interconnects (also printed) and are flexible. Wearable electrodes are also well suited to fitness context and have been integrated into e-textiles to monitor heart rate in a comfortable way. Both medical and fitness applications of printed wearable electrodes are likely to increase as the software for continuous monitoring develops thus creating greater demand, although the durability in e-textiles remains a concern for consumers.

Overview

IDTechEx has been researching the emerging printed electronics market for well over a decade, launching our first printed and flexible sensor report back in 2012. Since then, we have stayed close to the technical and market developments, interviewing key players worldwide, attending numerous conferences, delivering multiple consulting projects, and running classes and workshops on the topic. The depth and breadth of our insight is truly unrivalled, demonstrated by the detailed profiles of over 50 companies included within this report.

This report discusses each of these printed sensor categories in considerable detail, evaluating the different technologies and the challenges to adoption. We also develop 10-year market forecasts for each technology and application sector, delineated by both revenue and printed sensor area.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. An introduction to printed and flexible sensors
  • 1.2. Key markets for printed/flexible sensors
  • 1.3. Industry 4.0 requires printed sensors
  • 1.4. Growth opportunities for printed sensors in environmental and agricultural monitoring
  • 1.5. Shift to continuous healthcare monitoring creates opportunities for printed/flexible sensors
  • 1.6. Meeting application requirements: Incumbent technologies vs printed/flexible sensors
  • 1.7. Overall SWOT analysis of printed sensors overall
  • 1.8. Porters' five forces analysis for overall printed sensor market
  • 1.9. Key takeaways - for printed/flexible sensors overall
  • 1.10. Key takeaways - specific printed/flexible sensor types
  • 1.11. Reviewing the previous printed/flexible sensor report (2020-2030)
  • 1.12. Growth areas for printed piezoresistive sensors
  • 1.13. Opportunities for printed temperature sensors
  • 1.14. Overview of thin film photodetectors
  • 1.15. Opportunities for printed gas sensors
  • 1.16. Opportunities for capacitive strain sensors.
  • 1.17. Glucose test strips: A large but declining market
  • 1.18. Printed wearable electrode sensors: Opportunities in healthcare and fitness monitoring.
  • 1.19. Multifunctional printed/flexible sensors are a promising approach.
  • 1.20. Printed sensor applications require flexible hybrid electronics (FHE circuits)
  • 1.21. SWOT analysis for each printed sensor category

2. MARKET FORECASTS

  • 2.1. Market forecast methodology
  • 2.2. Difficulties of forecasting discontinuous technology adoption
  • 2.3. 10-year overall printed / flexible sensor forecast by sensor type (revenue, in USD millions)
  • 2.4. 10-year overall printed / flexible sensor forecast by sensor type excluding biosensors (revenue, in USD millions)
  • 2.5. 10-year piezoresistive sensor forecast by application (volume, in m2)
  • 2.6. 10-year printed piezoresistive sensor forecast by application (revenue, in USD millions)
  • 2.7. 10-year printed hybrid (capacitive/piezoresistive) sensor forecast by application (revenue, in USD millions)
  • 2.8. 10-year printed piezoelectric sensor forecast by application (volume, in m2)
  • 2.9. 10-year printed piezoelectric sensor forecast by application (revenue, in USD millions)
  • 2.10. 10-year printed photodetector forecast by application (volume, in m2)
  • 2.11. 10-year printed photodetector forecast by application (revenue, in USD millions)
  • 2.12. 10-year printed temperature sensor forecast by application (volume, in m2)
  • 2.13. 10-year printed temperature sensor forecast by application (revenue, USD millions)
  • 2.14. 10-year printed strain sensor forecast by application (volume, in m2)
  • 2.15. 10-year printed strain sensor forecast by application (revenue, USD millions)
  • 2.16. 10-year printed gas sensors forecasts by technology (volume, in m2)
  • 2.17. 10-year printed gas sensor forecasts by technology (revenue, in USD millions)
  • 2.18. 10-year printed humidity sensor forecasts (volume, in m2)
  • 2.19. 10-year printed humidity forecasts (revenue, in USD millions)
  • 2.20. 10-year printed biosensors forecast by technology (volume, in m2)
  • 2.21. 10-year printed biosensors forecast by technology (revenue, in USD millions)
  • 2.22. 10-year printed wearable electrodes forecast by application (volume, in m2)
  • 2.23. 10-year printed wearable electrodes forecast by application (revenue, in USD millions)

3. INTRODUCTION

  • 3.1.1. What is a sensor?
  • 3.1.2. Sensor value chain example: Digital camera
  • 3.1.3. What defines a 'printed' sensor?
  • 3.1.4. Printed vs conventional electronics
  • 3.1.5. Key markets for printed/flexible sensors
  • 3.1.6. Industry 4.0 requires printed sensors
  • 3.1.7. Opportunities for printed sensors: Facilitating computational data analysis
  • 3.1.8. Opportunities for printed sensors: Human machine interfaces (HMI)
  • 3.1.9. Human machine interface (HMI) technologies
  • 3.1.10. Shift to continuous healthcare monitoring creates
  • 3.1.11. Opportunities for printed sensors: Healthcare
  • 3.1.12. Growth opportunities for printed sensors in environmental and agricultural monitoring
  • 3.1.13. Printed sensor manufacturing
  • 3.1.14. A brief overview of screen, slot-die, gravure and flexographic printing
  • 3.1.15. A brief overview of digital printing methods
  • 3.1.16. Towards roll to roll (R2R) printing
  • 3.1.17. Advantages of roll-to-roll (R2R) manufacturing
  • 3.1.18. What proportion is printed?
  • 3.1.19. Printed sensor categories
  • 3.2. Impact of COVID-19 on the printed sensor market
    • 3.2.1. COVID-19 and printed sensors for smartphones
    • 3.2.2. COVID-19 and medical applications of printed sensors
    • 3.2.3. COVID-19, the automotive sector and printed sensors
    • 3.2.4. COVID-19, wearable technology and printed sensors
    • 3.2.5. COVID-19, IoT and printed sensors
    • 3.2.6. Impact of COVID-19 on the printed sensor market: Conclusions

4. PRINTED PIEZORESISTIVE SENSORS

  • 4.1.1. Printed piezoresistive sensors: An introduction
  • 4.1.2. Piezoresistive vs capacitive touch sensors
  • 4.2. Printed piezoresistive sensors: Technology
    • 4.2.1. What is piezoresistance?
    • 4.2.2. Percolation dependent resistance
    • 4.2.3. Quantum tunnelling composite
    • 4.2.4. Printed piezoresistive sensors: Anatomy
    • 4.2.5. Pressure sensing architectures
    • 4.2.6. Thru mode sensors
    • 4.2.7. Shunt mode sensors
    • 4.2.8. Force vs resistance characteristics
    • 4.2.9. Importance of actuator area
    • 4.2.10. Force sensitive inks
    • 4.2.11. Complete material portfolio approach for FSRs
    • 4.2.12. Shunt-mode FSR sensors by the roll
    • 4.2.13. R2R vs S2S manufacturing for piezoresistive sensors
    • 4.2.14. Example FSR circuits
    • 4.2.15. Effect of circuit design on sensor output
    • 4.2.16. Matrix pressure sensor architecture
    • 4.2.17. Printed foldable force sensing solution (Peratech)
    • 4.2.18. 3D multi-touch pressure sensors (Tangio)
    • 4.2.19. Hybrid FSR/capacitive sensors
    • 4.2.20. Hybrid FSR/capacitive sensors (Tangio)
    • 4.2.21. Curved sensors with consistent zero (Tacterion)
    • 4.2.22. Future technological development of piezoresistive sensors
    • 4.2.23. InnovationLab: Mass production of printed sensors
  • 4.3. Printed piezoresistive sensors: Applications
    • 4.3.1. Applications of piezoresistive sensors
    • 4.3.2. Medical applications of printed FSRs (Tekscan)
    • 4.3.3. More medical applications of printed FSR sensors (Tekscan)
    • 4.3.4. Force sensor examples: Vista Medical
    • 4.3.5. Dental occlusion monitoring with printed pressure sensors (Innovation Lab)
    • 4.3.6. Large-area pressure sensors for smart flooring and gait analysis.
    • 4.3.7. Textile-based applications of printed FSR
    • 4.3.8. Pressure sensitive fabric (Vista Medical)
    • 4.3.9. Piezoresistive e-textiles for medical applications (Sensing Tex)
    • 4.3.10. Flexible pressure-sensitive gloves (Tekscan)
    • 4.3.11. Consumer electronic applications of printed FSR
    • 4.3.12. Piezoresistive sensors in smartphones
    • 4.3.13. A portable MIDI controller - The Morph (Sensel)
    • 4.3.14. Automotive occupancy and seat belt alarm sensors
    • 4.3.15. Other automotive applications for printed piezoresistive sensors
    • 4.3.16. ForcIOT: Integrated stretchable pressure sensors
    • 4.3.17. InnovationLab: Spatially resolved flexible pressure sensor
    • 4.3.18. Smart carpet to enforce social distancing (due to coronavirus)
    • 4.3.19. Printed piezoresistive sensor application assessment
  • 4.4. Printed piezoresistive sensors: Summary
    • 4.4.1. Summary: Printed piezoresistive sensor applications
    • 4.4.2. Business models for printed piezoresistive sensors
    • 4.4.3. SWOT analysis of piezoresistive sensors
    • 4.4.4. Readiness level snapshot of printed piezoresistive sensors
    • 4.4.5. Force sensitive resistor sensor supplier overview
    • 4.4.6. Company profiles: Piezoresistive sensors

5. PRINTED PIEZOELECTRIC SENSORS

  • 5.1. Printed piezoelectric sensors: Technology
    • 5.1.1. Piezoelectricity: An introduction
    • 5.1.2. Piezoelectric polymers
    • 5.1.3. PVDF-based polymer options for sensing and haptic actuators
    • 5.1.4. Low temperature piezoelectric inks (Meggitt)
    • 5.1.5. Piezoelectric polymers
    • 5.1.6. Printed piezoelectric sensor
    • 5.1.7. Printed piezoelectric sensors: prototypes
    • 5.1.8. Pyzoflex
  • 5.2. Printed piezoelectric sensors: Applications
    • 5.2.1. Applications for printed piezoelectric sensors
    • 5.2.2. Piezoelectric actuators in loudspeaker/microphones
    • 5.2.3. PiezoPaint for industrial condition monitoring (Meggit)
    • 5.2.4. Combining energy harvesting and sensing
    • 5.2.5. VTT/Tampere University: Elastronics
    • 5.2.6. Attribute importance for piezoelectric sensor applications
  • 5.3. Printed piezoelectric sensors: Summary
    • 5.3.1. Summary: Piezoelectric sensors
    • 5.3.2. SWOT analysis of piezoelectric sensors
    • 5.3.3. Readiness level snapshot of printed piezoelectric sensors
    • 5.3.4. Piezoelectric sensor supplier overview
    • 5.3.5. Company profiles: Piezoelectric sensors

6. PRINTED PHOTODETECTORS

  • 6.1.1. Introduction to thin film photodetectors
  • 6.1.2. Comparison of photodetector technologies
  • 6.2. Printed photodetectors: Technology
    • 6.2.1. Photodetector working principles
    • 6.2.2. Quantifying photodetector and image sensor performance
    • 6.2.3. Organic photodetectors (OPDs)
    • 6.2.4. Thin film photodetectors: Advantages and disadvantages
    • 6.2.5. Reducing dark current to increase dynamic range
    • 6.2.6. Tailoring the detection wavelength to specific applications
    • 6.2.7. Extending OPDs to the NIR region: Use of cavities
    • 6.2.8. First OPD production line
    • 6.2.9. Technical challenges for manufacturing thin film photodetectors from solution
    • 6.2.10. Materials for thin film photodetectors
    • 6.2.11. Flexible image sensors based on amorphous Si
  • 6.3. Printed photodetectors: Applications
    • 6.3.1. OPDs for biometric security
    • 6.3.2. Spray-coated organic photodiodes for medical imaging
    • 6.3.3. 'Fingerprint on display' with OPDs (ISORG)
    • 6.3.4. Flexible OPD applications using TFT active matrix (ISORG)
    • 6.3.5. Pulse oximetry sensing with OPD (Cambridge Display Technology)
    • 6.3.6. Perovskite based image sensors (Holst Center)
    • 6.3.7. Academic research: Wearable skin patches with photodetectors
    • 6.3.8. Technical requirements for thin film photodetector applications
    • 6.3.9. Thin-film OPD and PPD application requirements
    • 6.3.10. Application assessment for thin film OPDs and PPDs.
    • 6.3.11. Commercial challenges for large-area OPD adoption
  • 6.4. Summary: Printed image sensors
    • 6.4.1. Summary: Thin film organic and perovskite photodetectors
    • 6.4.2. SWOT analysis of large area OPD image sensors
    • 6.4.3. Readiness level snapshot of printed photodetectors
    • 6.4.4. Supplier overview: Thin film photodetectors
    • 6.4.5. Company profiles: Printed image sensors

7. PRINTED TEMPERATURE SENSORS

  • 7.1.1. Introduction to printed temperature sensors
  • 7.1.2. Types of temperature sensors
  • 7.1.3. Comparing resistive temperature sensors and thermistors
  • 7.2. Printed temperature sensors: Technology
    • 7.2.1. Silicon nanoparticle ink for temperature sensing (PST Sensors) (II)
    • 7.2.2. Printed metal RTD sensors: Brewer Science
    • 7.2.3. Substrate challenges for printed temperature sensors
    • 7.2.4. Temperature sensors based on printed inorganic NTC material
    • 7.2.5. Heat and temperature sensor arrays with inkjet printing (INO - National Optics Institute, Canada)
    • 7.2.6. Printed miniaturized platinum heater for metal-oxide gas sensors (Fraunhofer IKTS)
    • 7.2.7. Printed temperature sensors for smart RFID sensors (CENTI)
    • 7.2.8. Academic research: Printed temperature sensor with stabilized PEDOT:PSS
    • 7.2.9. Time temperature indicators (TTIs)
    • 7.2.10. Chemical TTIs
    • 7.2.11. Chemical Time Temperature Indicators
    • 7.2.12. Examples of Chemical Time Temperature Indicators (TTIs)
  • 7.3. Printed temperature sensors: Applications
    • 7.3.1. Applications for printed temperature sensors
    • 7.3.2. Battery thermal management: Optimal temperature required
    • 7.3.3. Temperature monitoring for electric vehicles batteries gathers pace.
    • 7.3.4. Printed temperature sensors and heaters (IEE)
    • 7.3.5. Integrated pressure/temperature sensors and heaters for battery cells
    • 7.3.6. Proof-of-concept prototype of an integrated printed electronic tag
    • 7.3.7. Novel applications for flexible temperature sensors
    • 7.3.8. CNT temperature sensors (Brewer Science)
    • 7.3.9. Wearable temperature monitors
    • 7.3.10. Attribute importance for temperature sensor applications
  • 7.4. Printed temperature sensors: Summary
    • 7.4.1. Summary: Printed temperature sensors
    • 7.4.2. SWOT analysis of printed temperature sensors
    • 7.4.3. Technology readiness level snapshot of printed temperature sensors
    • 7.4.4. Printed temperature sensor supplier overview
    • 7.4.5. Company profiles: Printed temperature sensors

8. PRINTED STRAIN SENSORS

  • 8.1. Printed strain sensors: Technology
    • 8.1.1. Capacitive strain sensors
    • 8.1.2. Use of dielectric electroactive polymers (EAPs)
    • 8.1.3. Resistive strain sensors
    • 8.1.4. 3D printed soft electronics (Karlsruher Institute for Technology)
    • 8.1.5. Skin-inspired electronics (Zhenan Bao - Stanford University)
  • 8.2. Printed strain sensors: Applications
    • 8.2.1. Strain sensor applications
    • 8.2.2. Motion capture with capacitive strain sensor (Parker Hannifin)
    • 8.2.3. Strain sensitive e-textiles (Stretchsense)
    • 8.2.4. Strain sensitive e-textiles (Bando Chemical)
    • 8.2.5. Strain sensor e-textiles (Yamaha and Kureha)
    • 8.2.6. Industrial displacement sensors (LEAP Technology)
    • 8.2.7. Resistive strain sensor example (BeBop Sensors)
    • 8.2.8. Resistive strain sensor for gloves (Polymatech)
  • 8.3. Printed strain sensors: Summary
    • 8.3.1. Summary: Strain sensors
    • 8.3.2. SWOT analysis of flexible strain sensors
    • 8.3.3. Technology readiness level snapshot of capacitive strain sensors
    • 8.3.4. Printed high-strain sensor supplier overview
    • 8.3.5. Company profiles: Strain sensors

9. PRINTED GAS SENSORS

  • 9.1.1. Printed gas sensors: An introduction
  • 9.1.2. The gas sensor value chain
  • 9.2. Printed gas sensors: Technology
    • 9.2.1. Gas sensor industry
    • 9.2.2. History of chemical sensors
    • 9.2.3. Transition to miniaturised gas sensors
    • 9.2.4. Comparison between classic and miniaturised sensors
    • 9.2.5. Concentrations of detectable atmospheric pollutants
    • 9.2.6. Five common detection principles for gas sensors
    • 9.2.7. Sensitivity for main available gas sensors
    • 9.2.8. Comparison of miniaturised sensor technologies
    • 9.2.9. Pellistor gas sensors
    • 9.2.10. Metal oxide semiconductors (MOS) gas sensors
    • 9.2.11. Printing MOS sensors
    • 9.2.12. Screen printed MOS sensors (Figaro)
    • 9.2.13. MOS gas sensors with printed electrodes (FIS)
    • 9.2.14. Screen printed MOS sensors (Renesas Electronics)
    • 9.2.15. Electrochemical (EC) gas sensors
    • 9.2.16. Printed components of electrochemical gas sensor
    • 9.2.17. Printed traditional EC gas sensor
    • 9.2.18. Screen printed miniaturised EC gas sensor
    • 9.2.19. Infrared gas sensors
    • 9.2.20. Electronic nose (e-Nose)
    • 9.2.21. Integrating an 'electronic nose' with a flexible IC
    • 9.2.22. Printed carbon nanotube based gas sensors
    • 9.2.23. CNT-based electronic nose for gas fingerprinting (PARC)
    • 9.2.24. Printed humidity sensors for smart RFID sensors (CENTI)
    • 9.2.25. Printed humidity/moisture sensor (Brewer Science)
    • 9.2.26. Humidity sensors based on organic electronics (Invisense)
    • 9.2.27. Printed miniaturized platinum heater for metal-oxide gas sensors (Fraunhofer IKTS)
    • 9.2.28. CO2 sensing via heat of adsorption
    • 9.2.29. Academic research: Low-cost biodegradable sensors
    • 9.2.30. Academic research: Carbon nanotubes and catalyst sense vegetable spoilage
  • 9.3. Printed gas sensors: Applications
    • 9.3.1. Gas sensors will find use in various IoT segments
    • 9.3.2. Gas sensors in automotive industry
    • 9.3.3. Printed gas sensors for air quality monitoring
    • 9.3.4. Emerging market: Personal devices
    • 9.3.5. Gas sensors for mobile devices
    • 9.3.6. Mobile phones with air quality sensors
    • 9.3.7. H2S professional gas detector watch
    • 9.3.8. Air quality monitoring for smart cities
    • 9.3.9. Home And Office Monitoring: A Connected Environment
  • 9.4. Printed gas sensors: Summary
    • 9.4.1. Summary: Gas sensors
    • 9.4.2. Future challenges for gas sensor manufacturers
    • 9.4.3. Technology readiness level snapshot of gas sensors
    • 9.4.4. SWOT analysis of gas sensors
    • 9.4.5. Supplier overview: Printed gas sensors
    • 9.4.6. Company profiles: Gas sensors

10. PRINTED CAPACITIVE SENSORS

  • 10.1. Printed capacitive sensors: Technology
    • 10.1.1. Capacitive sensors: Working principle
    • 10.1.2. Hybrid capacitive / piezoresistive sensors
    • 10.1.3. Metallization and materials for capacitive sensing within 3D electronics
    • 10.1.4. In-mold electronics vs film insert molding
    • 10.1.5. In-mold electronics for automotive capacitive sensing
    • 10.1.6. Integrated capacitive sensing (TG0)
    • 10.1.7. Emerging current mode sensor readout: Principles
    • 10.1.8. Benefits of current-mode capacitive sensor readout
    • 10.1.9. Academic research: Epidermal electronics with a nanomesh pressure sensor
  • 10.2. Printed capacitive sensors: Transparent conductive materials
    • 10.2.1. Conductive materials for transparent capacitive sensors
    • 10.2.2. Quantitative benchmarking of different TCF technologies
    • 10.2.3. Sheet resistance vs thickness for transparent conductive films
    • 10.2.4. Indium tin oxide: The incumbent transparent conductive film
    • 10.2.5. ITO film shortcomings
    • 10.2.6. Silver nanowires: An introduction
    • 10.2.7. Ag haze: Demonstrating impact of NW aspect ratio
    • 10.2.8. Prospects for Ag NW adoption
    • 10.2.9. Metal mesh: Photolithography followed by etching
    • 10.2.10. Direct printed metal mesh transparent conductive films: performance
    • 10.2.11. Direct printed metal mesh transparent conductive films: major shortcomings
    • 10.2.12. Toppan Printing's copper mesh transparent conductive films
    • 10.2.13. Eastman Kodak: Transparent ultra low-resistivity RF antenna using printed Cu metal mesh technology
    • 10.2.14. Introduction to Carbon Nanotubes (CNT)
    • 10.2.15. Carbon nanotube transparent conductive films: performance
    • 10.2.16. Carbon nanotube transparent conductive films: performance of commercial films on the market
    • 10.2.17. Carbon nanotube transparent conductive films: Matched index
    • 10.2.18. Combining AgNW and CNTs for a TCF material (Chasm)
    • 10.2.19. Introduction to PEDOT:PSS
    • 10.2.20. Performance of PEDOT:PSS has drastically improved
    • 10.2.21. PEDOT:PSS performance improves to match ITO-on-PET
    • 10.2.22. Polythiophene-based conductive films for flexible devices (Heraeus)
    • 10.2.23. Technology comparison
  • 10.3. Printed capacitive sensors: Applications
    • 10.3.1. Rotary dial on a capacitive touch screen (Ford)
    • 10.3.2. Use case examples of PEDOT:PSS for capacitive touch sensors
    • 10.3.3. Emerging current-mode sensor readout enables large area touch screens
    • 10.3.4. Foldable displays incorporating C3 Nano's AgNWs
  • 10.4. Printed capacitive sensors: Summary
    • 10.4.1. Summary: Capacitive touch sensors
    • 10.4.2. Summary: Transparent conductive materials
    • 10.4.3. Readiness level of capacitive touch sensors materials and technologies
    • 10.4.4. SWOT analysis of capacitive touch sensors
    • 10.4.5. SWOT analysis of transparent conductors for capacitive touch sensors
    • 10.4.6. TCF material supplier overview
    • 10.4.7. Capacitive touch sensor companies (excluding materials suppliers)
    • 10.4.8. Company profiles: Capacitive sensors

11. PRINTED BIOSENSORS

  • 11.1.1. Electrochemical biosensors present a simple sensing mechanism
  • 11.2. Printed biosensors: Technology
    • 11.2.1. Electrochemical biosensor mechanisms
    • 11.2.2. Enzymes used in PoC electrochemical biosensors
    • 11.2.3. Electrode deposition: screen printing vs sputtering
    • 11.2.4. Anatomy of a glucose test strip
    • 11.2.5. Challenges for printing electrochemical test strips
    • 11.2.6. Printed pH sensors for biological fluids
  • 11.3. Printed biosensors: Applications
    • 11.3.1. Glucose test strip monitoring through an associated reader
    • 11.3.2. Sensors for diabetes management roadmap
    • 11.3.3. Summary: Printed biosensors
    • 11.3.4. Introduction to printed biosensors for diabetes management
    • 11.3.5. CGM begins to replace test strips (Abbott)
    • 11.3.6. Comparing test strip costs with CGM
    • 11.3.7. Continuous glucose monitoring (CGM) is causing glucose test strip use to decline.
    • 11.3.8. Electrochemical sensors are a more accurate method of ketone monitoring
    • 11.3.9. Lactic acid monitoring for athletes with printed sensors
    • 11.3.10. Printed point of care cholesterol tests?
  • 11.4. Printed biosensors: Summary
    • 11.4.1. The future of electrochemical PoC biosensors
    • 11.4.2. SWOT analysis of printed biosensors
    • 11.4.3. Readiness level of printed biosensors
    • 11.4.4. Supplier overview: Biosensors
    • 11.4.5. Biosensors: Company profiles

12. PRINTED WEARABLE ELECTRODES

  • 12.1. Printed wearable electrodes: Skin patches
    • 12.1.1. Introduction to printed wearable electrodes and skin patches
    • 12.1.2. The case for skin patches: Improving device form factor
    • 12.1.3. Applications for electrodes and skin patches
    • 12.1.4. Using electrodes to measure biopotential
    • 12.1.5. Disposable metal snap electrodes - the current electrode technology
    • 12.1.6. Market for metal snap Ag/AgCl electrodes
    • 12.1.7. Skin patches with integrated electrodes - an opportunity for printed electrodes.
    • 12.1.8. Smart patch with printed silver ink (Quad Industries)
    • 12.1.9. QT Medical develop printed electrodes and interconnects
    • 12.1.10. Printed electrodes and interconnects for pregnancy monitoring (Monica Healthcare)
    • 12.1.11. Flexible and stretchable electrode (ScreenTec OY)
    • 12.1.12. GE Research: Manufacturing of disposable wearable vital signs monitoring devices
    • 12.1.13. Printed wireless wearable electrodes (Dupont)
    • 12.1.14. Printable dry ECG electrodes (Henkel)
    • 12.1.15. New printed electrode materials form Henkel
    • 12.1.16. Comparing printed and metal snap electrode performance
    • 12.1.17. Advantages of printed dry electrode adhesives
    • 12.1.18. Grid printed electrodes (Nissha GSI)
    • 12.1.19. Alternative printed electrode materials
    • 12.1.20. Prof. John Rodgers (Northwestern University): Epidermal electronics
    • 12.1.21. Printed wearable electrodes: E-textiles
  • 12.2. E-Textiles: Where textiles meet electronics
    • 12.2.1. Biometric monitoring in apparel
    • 12.2.2. Integrating heart rate monitoring into clothing
    • 12.2.3. Sensors used in smart clothing for biometrics
    • 12.2.4. Companies with biometric monitoring apparel products
    • 12.2.5. Textile electrodes
    • 12.2.6. E-textile material use over time
    • 12.2.7. Printed electrodes on clothing (Toyobo)
    • 12.2.8. Monitoring racehorse health with printed electrodes (Toyobo)
    • 12.2.9. Stretchable conductive printed electrodes (Nanoleq)
    • 12.2.10. Sensing functionality woven into textiles (Myant)
  • 12.3. Printed wearable electrodes: Summary
    • 12.3.1. Summary: Flexible wearable electrodes
    • 12.3.2. SWOT analysis of printed flexible wearable electrodes
    • 12.3.3. Readiness level of printed wearable electrodes
    • 12.3.4. Supplier overview: Printed electrodes for skin patches and e-textiles
    • 12.3.5. Company profiles: Flexible wearable electrodes

13. MULTIFUNCTIONAL PRINTED SENSORS

  • 13.1. Multifunctional printed/flexible sensors: Motivation and possible architectures
  • 13.2. Holst Center: Flexible electronics for human-centric healthcare
  • 13.3. Condition monitoring multimodal sensor array
  • 13.4. PARC: Multi-sensor wireless asset tracking system
  • 13.5. 'Sensor-less' sensing of temperature and movement

14. PRINTED SENSORS IN FLEXIBLE HYBRID ELECTRONICS (FHE CIRCUITS).

  • 14.1. Printed sensor applications require flexible hybrid electronics (FHE circuits)
  • 14.2. Defining flexible hybrid electronics (FHE)
  • 14.3. FHE Examples: Combing conventional components with flexible/printed electronics on flexible substrates
  • 14.4. FHE: The best of both worlds?
  • 14.5. What counts as FHE?
  • 14.6. Overcoming the flexibility/functionality compromise
  • 14.7. Integrating sensors in FHE circuits
  • 14.8. ITN Energy: Ultra-thin self-powered sensor platform
  • 14.9. Wine temperature sensing label
  • 14.10. Wearable ECG sensor from VTT
  • 14.11. An electronic nose with FHE (PlasticArm project - ARM, PragmatIC)
  • 14.12. FHE and printed sensors for smart packaging.
  • 14.13. SWOT analysis of printed sensors in FHE circuits
  • 14.14. Supplier overview: Printed sensors in FHE circuits
  • 14.15. Company profiles: Flexible hybrid electronics