NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

3D打印复合材料(2021-2031):技术和市场分析

3D Printing Composites 2021-2031: Technology and Market Analysis

出版商 IDTechEx Ltd. 商品编码 1017894
出版日期 内容资讯 英文 172 Slides
商品交期: 最快1-2个工作天内
价格
3D打印复合材料(2021-2031):技术和市场分析 3D Printing Composites 2021-2031: Technology and Market Analysis
出版日期: 2021年07月09日内容资讯: 英文 172 Slides
简介

标题
3D 打印复合材料 (2021-2031):技术和市场分析
技术和打印机基准研究、全面的参与者评估、基于访谈的公司简介和精细的市场预测。

到 2031 年,3D 打印玻璃钢市场将达到 20 亿美元。

复合材料的 3D 打印正成为商业的转折点。聚合物材料的 3D 打印可能具有机械限制,这得益于纤维增强(或其他功能),而复合材料制造成本高昂,而挑战这一点可以受益于增材制造实现的无模具、快速原型制作和自动化方法。

IDTechEx 预测,到 2031 年,该市场将迅速增长,达到 20 亿美元。这份市场报告提供了复合材料3D 打印市场的全面视图,包括 10 年粒度预测、材料和打印机基准研究以及基于采访的公司个人资料。

技术与材料分析

本报告重点关注纤维增强聚合物 (FRP),其中大部分市场由玻璃纤维和碳纤维热塑性塑料主导。这不是一项全新的技术;它建立在 3D 打印行业的发展基础之上,并且需要时间来发展并达到商业成熟点。

有多种 3D 打印复合材料的方法,主要考虑材料(连续纤维与短切纤维;热塑性与热固性)以及使其适合工业组织或专业消费者的桌面设备的打印机特性或业余爱好者。

基于广泛的初步采访和长时间的市场研究,IDTechEx 分析师提供了全面的打印机制造商分析和打印机基准研究。这对于瞭解市场潜力、技术差异化、痛点和局限性以及市场状况至关重要。关键的市场新闻、合作伙伴关系和收购都得到了详细的探讨;随著更多资金的到来和兴趣的增加,这将促进增长,但 IDTechEx 预计中期将出现不可避免的整合。

有专门的章节侧重于:热塑性长丝挤出、片材层压、粉末床融合(例如 SL S)、热固性分配和还原光聚合。

有许多新兴技术发展,包括在光敏聚合物中实现短切纤维排列、高通量、多轴打印机、更大规模、增加纤维含量、多材料功能等。报告中详细介绍了这些进展。

最后,将其与复合材料自动化制造的最新发展进行比较。无论是通过 AFP 和ATL 流程,还是通过用于有机片材的拾放机器人,要瞭解 3D 打印在该行业中可以发挥的作用,有很多需要注意的地方。

3D打印复合材料 2021-2031:技术和市场分析

行业的核心是使用的材料。这些材料决定了零件属性和打印机要求;它们也是正在采用的具有竞争力的商业模式的核心。该报告提供了对材料供应商的全面评估以及价格和性能基准研究。连续纤维复合材料是许多最终目标,具有重要价值,但它们的短纤维复合材料以及正在部署的一系列热塑性塑料和热固性树脂仍有很大机会。

市场预测和应用

在几乎所有情况下,采用的技术都是通过模具、原型设计或小批量零件生产,以替代金属或作为制造现有复合材料零件的更经济方式。最常见的用例是提供工具、夹具和固定装置的角色,这可以让制造商区分和加速他们的过程,或者允许参与者在内部引入某些以前不可能实现的功能。应用正在迅速扩展,许多最终用户从这些打印机中发现了能源、航空航天和国防、奢侈品和体育用品、航天、船舶、医疗、汽车和赛车运动、机器人、铁路以及电子设备和组件的价值。

通过详细的初步采访和深厚的技术知识,这份报告为读者带来了对行业的公正展望,包括:

  • 关键案例研究和最终用途应用的重点示例
  • 按区域分布和打印机流程划分的市场份额
  • 投资资本的历史趋势
  • 按打印机类型(桌面与工业;热塑性塑料与热固性塑料)划分的基于挤压的打印机的 10 年市场预测(单位数量和收入)
  • 对材料需求(按材料类型划分)以及服务和软件的10 年市场预测。

这也是考虑到更大的复合材料市场、全球 3D 打印行业以及瞭解 COVID-19 大流行对行业产生的影响。

谁应该购买这份报告?

本报告面向复合材料 3D 打印市场中或寻求参与其中的人员,包括:

  • 供应链中的公司(例如材料公司)
  • 3D 打印公司(例如那些已经在复合材料领域或正在寻找机会的公司)
  • 复合制造公司和更广泛的自动化公司
  • 最终用户:航空航天与国防、能源、体育与奢侈品、研□□发中心、海事、航天、汽车,以及通常为制造设备提供工具和夹具的用户
  • 外部参与者和投资者

来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师最多 30分钟的电话时间,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1 . 执行摘要和结论

  • 1.1. 复合材料3D打印简介
  • 1.2. 复合3D打印技术进展
  • 1.3. 11位关键人物总结
  • 1.4. 向 3D 打印复合材料投资
  • 1.5。关键战略合作伙伴和收购
  • 1.6. 5 种商业类别的复合热塑性塑料挤出打印机
  • 1.7. 材料原料基准研究
  • 1.8。打印机基准研究
  • 1.9. 最终用户应用:行业概览
  • 1.10. 影响3D打印复合材料市场的因素
  • 1.11. 基于主要面试的公司简介
  • 1.12。3D 打印复合材料的总市场预测
  • 1.13. 市场预测 3DP 复合材料:挤压材料需求
  • 1.14. 市场份额:区域分布
  • 1.15。复合 3D 打印的下一步是什么?

2. 3D 打印市场概览

  • 2.1. 报告范围
  • 2.2. 七个不同类型的3D印刷工艺的ES
  • 2.3. 主要材料-工艺关系
  • 2.4. 为什么要采用 3D 打印?
  • 2.5. 桌面3D打印机大爆发
  • 2.6. 3D 打印聚合物的历史:爱好者的兴起
  • 2.7. 消费者 vs 专业消费者 vs 专业人士
  • 2.8. 使用模式和市场细分
  • 2.9. 商业模式:确保未来收入
  • 2.10. 增长的驱动因素和制约因素
  • 2.11. 全球3D打印市场展望
  • 2.12. COVID-19 对 3D 打印行业的影响

3. 轻量化介绍

  • 3.1. 什么是轻量化?
  • 3.2. 轻量级材料驱动
  • 3.3. 轻量化材料对比
  • 3.4. 小体积零件的挑战
  • 3.5。轻质材料候选

4. 复合材料

  • 4.1. 复合材料简介
  • 4.2. 复合材料简介
  • 4.3. 相对纤维性能的比较
  • 4.4. 成本调整后的纤维特性
  • 4.5。复合材料制造商的供应链
  • 4.6. 碳纤维:概述
  • 4.7. 碳纤维:历史增长和市场现状
  • 4.8. 碳纤维:制造商分析
  • 4.9. 碳纤维:产能扩张和区域分布
  • 4.10。C阿尔邦纤维:材料的成本
  • 4.11. 碳纤维:收购和合作
  • 4.12. 玻璃纤维:概述
  • 4.13. 聚合物基体介绍
  • 4.14. 树脂 - 概述和性能比较
  • 4.15。复合材料用热塑性塑料- 概述
  • 4.16。热固性树脂 - 概述
  • 4.17。复合材料制造中机器人技术的兴起
  • 4.18。CFRP 自动化案例研究

5. 3D 打印复合材料:概述

  • 5.1. 复合材料3D打印简介
  • 5.2. 七种不同类型的 3D 打印工艺
  • 5.3. 复合3D打印技术进展
  • 5.4. 增长的驱动因素和制约因素
  • 5.5。完成公司评估
  • 5.6. 打印机标杆螺柱y

6. 3D 打印复合材料:技术分析

  • 6.1. 纤维增强热塑性长丝挤出
    • 6.1.1. 3D 打印复合材料:打印机工艺
    • 6.1.2. 复合挤出打印机的5大商业类别
    • 6.1.3. 短切纤维热塑性长丝挤出:(挤出)
    • 6.1.4. 关键热塑性挤出复合打印机:工业用短纤维
    • 6.1.5。连续纤维热塑性长丝挤出
    • 6.1 .6. 连续纤维热塑性带挤出
    • 6.1.7。实现连续纤维挤出的 3 种选择
    • 6.1.8。使用胶带 3D 打印连续纤维复合材料
    • 6.1.9。与 ATL/AFP 的比较
    • 6.1.10。DED:与原位合并 AFP 的比较
    • 6.1.11。关键的热塑性挤出复合打印机:连续纤维桌面
    • 6.1.12。关键热塑性挤出复合打印机:工业用连续纤维
    • 6.1.13。关键的热塑性挤出复合打印机:大型连续纤维
    • 6.1.14。市场领导者快照:Markforged
    • 6.1.15。中国重点企业:连续纤维挤出打印机
    • 6.1.16。中国重点企业:短纤维挤出打印机
    • 6.1.17。中国重点企业:短纤维挤出打印机 (2)
    • 6.1.18。大幅面热塑性长丝挤出
    • 6.1.19。提高复合材料 3D 打印的吞吐量
    • 6.1.20。使用纤维 + 热塑性长丝挤出的服务局
    • 6.1.21。独立研究机构的标杆研究
  • 6.2. 片材层压
    • 6.2.1. 3D 打印复合材料:打印机工艺
    • 6.2.2. 片材层压
    • 6.2 .3. 市场领导者快照:Impossible Objects
  • 6.3. 粉床融合
    • 6.3.1. 3D 打印复合材料:打印机工艺
    • 6.3.2. 粉末床融合 - 选择性激光烧结 (SLS)
    • 6.3.3. 市场领导者快照:E OS
    • 6.3.4. 中国重点企业:碳纤维SLS打印机
    • 6.3.5. 主要发展
  • 6.4. 纤维增强热固性点胶
    • 6.4.1. 3D 打印复合材料:打印机工艺
    • 6.4.2. 连续纤维热固性分配
    • 6.4.3. 市场领导者快照:连续复合材料
    • 6.4.4. 大规模热固性点胶工艺
  • 6.5。还原光聚合
    • 6.5.1. 3D 打印复合材料:打印机工艺
    • 6.5.2. 还原光聚合:强化
    • 6.5.3. 玻璃增强光敏聚合物
  • 6.6. 新兴方法
    • 6.6.1. 3D 打印复合材料:打印机工艺
    • 6.6.2. 自动化预成型
    • 6.6.3. 替代热塑性挤出工艺
    • 6.6.4。包含印后纤维的还原光聚合

7. 3D 打印复合材料:材料分析

  • 7.1. 原料:介绍
  • 7.2. 纤维增强热塑性长丝
  • 7.3. 材料评估:矩阵注意事项
  • 7.4. 材料评估:机械性能
  • 7.5。材料评估:价格和性能基准
  • 7.6. 完整材料清单:短碳纤维 <李>7.7。完整材料清单:短玻璃纤维
  • 7.8。完整材料清单:粉末
  • 7.9。完整材料清单:连续纤维
  • 7.10。独立研究机构的标杆研究
  • 7.11。重要的材料新闻和发展
  • 7.12。再生碳纤维作为原料
  • 7.13。纳米碳添加剂:性能优势
  • 7.14。纳米碳添加剂:商业活动

8. 应用程序

  • 8.1. 最终用户应用:行业概览
  • 8.2. CFRP应用炒作曲线
  • 8.3. 夹具和固定装置
  • 8.4. 工装
  • 8.5。航空航天与国防
  • 8.6. 无人机和卫星
  • 8.7. 医疗的
  • 8.8. 汽车
  • 8.9. 活力
  • 8.10. 海洋
  • 8.11. 功能原型:嵌入式传感器
  • 8.12。运动和奢侈品
  • 8.13. 机器人和无人机
  • 8.14. 电子设备和组件

9. 市场分析和预测

  • 9.1. 市场份额:区域分布
  • 9.2. 市场份额:技术分裂
  • 9.3. 投资 3D 打印复合材料
  • 9.4. 预测方法和结果介绍
  • 9.5。3D 打印复合材料的总市场预测
  • 9.6. 市场预测 3DP 复合材料:累积热塑性挤出打印机安装
  • 9.7. 市场预测 3DP 复合材料:热塑性塑料挤出收入
  • 9.8. 市场预测 3DP 复合材料:年度热塑性挤出打印机销量
  • 9.9. 市场预测3DP复合材料:热塑性挤出打印机材料需求
  • 9.10。市场预测 3DP 复合材料:热固性收入

10。公司简介

  • 10.1. 基于主要面试的公司简介

11。附录 - 数据

  • 11.1. 2021-2031 年 3D 打印复合材料市场:总收入
  • 11.2. 2021-2031 年 3D 打印复合材料市场:年度打印机单位销量
  • 11.3. 2021-2031 年 3D 打印复合材料市场:总材料原料质量
  • 11.4. 2017-2031 年3D 打印复合材料市场:热塑性塑料挤出收入
  • 11.5。2017-2031 年 3D 打印复合材料市场:用于热塑性塑料挤出的年度桌面和工业打印机安装
  • 11.6. 2017-2031 年 3D 打印复合材料市场:用于热塑性塑料挤出的桌面和工业打印机累积安装量
  • 11.7. 2017-2031 年 3D 打印复合材料市场:按类型划分的年度材料需求(质量)
  • 11.8。2017-2031 年 3D 打印复合材料市场:收入热固性打印机、服务和材料
目录
Product Code: ISBN 9781913899608

Title:
3D Printing Composites 2021-2031: Technology and Market Analysis
Technology and printer benchmarking studies, comprehensive player assessment, interview-based company profiles, and granular market forecasts.

The market for 3D Printing FRPs will reach $2bn by 2031.

3D printing of composite materials is reaching a commercial tipping point. 3D printing of polymer materials can have mechanical limitations that benefit from fiber reinforcement (or other functionalities), and composite manufacturing is known to be costly, and challenging this can benefit from the moldless, rapid prototyping and automated approach that additive manufacturing enables.

IDTechEx forecast that the market will rapidly rise to reach $2bn by 2031. This market report provides a comprehensive view for 3D printing market for composite material including granular 10-year forecasts, material and printer benchmarking studies and interview-based company profiles.

Technology & Materials Analysis

This report focusses on fiber reinforced polymers (FRP), with most of the market dominated by glass fiber and carbon fiber thermoplastics. This is not a brand-new technology; it has been built upon the growth of the 3D printing industry at large and has taken time to develop and reach a point of commercial maturity.

There are numerous approaches to 3D printing composite material, with key considerations around the material (continuous fiber vs chopped fibers ; thermoplastic vs thermoset) and the printer properties that make it appropriate for an industrial organisation or a desktop device for a prosumer or hobbyist.

Based on extensive primary-interviews and an extended period studying the market, IDTechEx analysts have provided a comprehensive printer manufacturer analysis and printer benchmarking study. This is essential to understand the market potential, technology differentiation, pain points & limitations, and the market status. The key market news, partnerships and acquisitions are all explored in detail; with more funding arriving and increasing interest then this will facilitate the growth but IDTechEx anticipate an inevitable consolidation in the mid-term.

There are dedicated chapters focusing on: thermoplastic filament extrusion, sheet lamination, powder bed fusion (e.g. SLS), thermoset dispensing, and vat photopolymerization.

There are numerous emerging technology developments, from those achieving chopped fiber alignments in a photopolymer, high-throughput, multi-axis printers, larger scales, increasing the fiber content, multi-material capabilities, and more. These are developments are detailed throughout the report.

Finally, this is compared against the latest developments in the automated manufacturing of composite material. Be it through AFP & ATL processes or via pick-and-place robots for organosheets, there is much to be aware of to understand the role that 3D printing can play within this industry.

3D Printing Composites 2021-2031: Technology and Market Analysis

Central to the industry are the materials that are used. These materials are what dictates the part properties and printer requirements; they are also central to the competitive business models that are being employed. This report provides a comprehensive assessment of the material providers and a price and properties benchmarking study. Continuous fiber composites are for many the end-goal, with significant value, but there is a large opportunity in their short counterparts and a range of thermoplastics and thermoset resins being deployed.

Market Forecasts and Applications

In nearly all cases, the technology adoption is to allow for a metal replacement or as a more economical way to make existing composite parts, via the tooling, prototyping or low-volume part production. The most common use-case is for the role in providing tools, jigs and fixtures, this can allow manufacturers to differentiate & accelerate their process or allow players to bring certain capabilities in-house that were previously not possible. The applications are rapidly expanding and there are numerous end-users finding value from these printers in energy, aerospace & defense, luxury & sporting goods, space, marine, medical, automotive & motorsport, robotics, rail, and electronic devices & components.

Through detailed primary-interviews and with deep technical knowledge, this report brings the reader unbiased outlook for the industry including:

  • Key case studies and highlighted examples of end-use application
  • Market share by regional distribution and printer process
  • Historical trend in investment capital
  • 10-year market forecasts for extrusion-based printers (unit number & revenue) split by printer type (desktop vs industrial ; thermoplastic vs thermoset)
  • 10-year market forecasts for material demand (split by material type) and services & software.

This is also put in the context of the larger composites market, the global 3D printing industry, and understanding the impact that the COVID-19pandemic has had on the industry.

Who should buy this report?

This report is for those in, or seeking to get involved in, the 3D printing of composites market, including:

  • Companies in the supply chain (such as materials companies)
  • 3D printing companies (either those already in composites or those looking at the opportunity)
  • Composite manufacturing companies and wider into automation
  • End-users: aerospace & defence, energy, sports & luxury goods, R&D centres, marine, space, automotive, and generally those providing tooling and jigs & fixtures for manufacturing equipment
  • External players and investors

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Introduction to 3D printing of composite material
  • 1.2. Composite 3D printing technological progression
  • 1.3. Summary of 11 key players
  • 1.4. Investment capital into 3D printing composites
  • 1.5. Key strategic partnerships & acquisitions
  • 1.6. 5 commercial categories of composite thermoplastic extrusion printers
  • 1.7. Material feedstock benchmarking study
  • 1.8. Printer benchmarking study
  • 1.9. End-user application: sector overview
  • 1.10. Factors influencing 3D printing composites market
  • 1.11. Primary interview based company profiles
  • 1.12. Total market forecasts for 3D printing composites
  • 1.13. Market forecasts 3DP composites: material demand for extrusion
  • 1.14. Market share: regional distribution
  • 1.15. Where next for composite 3D printing?

2. 3D PRINTING MARKET OVERVIEW

  • 2.1. Scope of report
  • 2.2. The seven different types of 3D printing processes
  • 2.3. Major material-process relationships
  • 2.4. Why adopt 3D printing?
  • 2.5. The desktop 3D printer explosion
  • 2.6. History of 3D printing polymers: the rise of the hobbyist
  • 2.7. Consumer vs prosumer vs professional
  • 2.8. Use patterns and market segmentation
  • 2.9. Business models: securing future revenues
  • 2.10. Drivers and restraints of growth
  • 2.11. Global 3D printing market outlook
  • 2.12. Impact of COVID-19 on the 3D printing industry

3. INTRODUCTION TO LIGHTWEIGHTING

  • 3.1. What is lightweighting?
  • 3.2. Lightweight material drivers
  • 3.3. Comparison of lightweight materials
  • 3.4. The challenge with small and low-volume parts
  • 3.5. Lightweight Material Candidates

4. COMPOSITE MATERIALS

  • 4.1. Introduction to composites
  • 4.2. Introduction to composite materials
  • 4.3. Comparison of relative fibre properties
  • 4.4. Cost adjusted fibre properties
  • 4.5. Supply chain for composite manufacturers
  • 4.6. Carbon fiber: Overview
  • 4.7. Carbon fiber: historical growth and market status
  • 4.8. Carbon fiber: manufacturer analysis
  • 4.9. Carbon fiber: capacity expansions and regional distribution
  • 4.10. Carbon fiber: cost of material
  • 4.11. Carbon fiber: acquisitions and partnerships
  • 4.12. Glass fibres: Overview
  • 4.13. Polymer matrix introduction
  • 4.14. Resins - overview and property comparison
  • 4.15. Thermoplastics for composites - overview
  • 4.16. Thermosetting resins - overview
  • 4.17. Rise of robotics in composite manufacturing
  • 4.18. CFRP automation case study

5. 3D PRINTING COMPOSITES: OVERVIEW

  • 5.1. Introduction to 3D printing of composite material
  • 5.2. The seven different types of 3D printing processes
  • 5.3. Composite 3D printing technological progression
  • 5.4. Drivers and restraints of growth
  • 5.5. Complete company assessment
  • 5.6. Printer benchmarking study

6. 3D PRINTING COMPOSITES: TECHNOLOGY ANALYSIS

  • 6.1. Fibre reinforced thermoplastic filament extrusion
    • 6.1.1. 3D printing composites: printer processes
    • 6.1.2. 5 commercial categories of composite extrusion printers
    • 6.1.3. Chopped fibre thermoplastic filament extrusion: (extrusion)
    • 6.1.4. Key thermoplastic extrusion composite printers: Industrial with short fiber
    • 6.1.5. Continuous fiber thermoplastic filament extrusion
    • 6.1.6. Continuous fibre thermoplastic tape extrusion
    • 6.1.7. 3 options to achieve continuous fiber extrusion
    • 6.1.8. 3D printing continuous fiber composites using tapes
    • 6.1.9. Comparison to ATL/AFP
    • 6.1.10. DED: Comparison to in-situ consolidated AFP
    • 6.1.11. Key thermoplastic extrusion composite printers: Desktop with continuous fiber
    • 6.1.12. Key thermoplastic extrusion composite printers: Industrial with continuous fiber
    • 6.1.13. Key thermoplastic extrusion composite printers: large-scale with continuous fibers
    • 6.1.14. Market leader snapshot: Markforged
    • 6.1.15. Key companies in China: Extrusion printers with continuous fibers
    • 6.1.16. Key companies in China: Extrusion printers with short fibers
    • 6.1.17. Key companies in China: Extrusion printers with short fibers (2)
    • 6.1.18. Large format thermoplastic filament extrusion
    • 6.1.19. Increasing the throughput of composite 3D printing
    • 6.1.20. Service bureaus using fibre + thermoplastic filament extrusion
    • 6.1.21. Benchmarking study by independent research institute
  • 6.2. Sheet lamination
    • 6.2.1. 3D printing composites: printer processes
    • 6.2.2. Sheet lamination
    • 6.2.3. Market leader snapshot: Impossible Objects
  • 6.3. Powder bed fusion
    • 6.3.1. 3D printing composites: printer processes
    • 6.3.2. Powder bed fusion- Selective Laser Sintering (SLS)
    • 6.3.3. Market leader snapshot: EOS
    • 6.3.4. Key companies in China: SLS printers with carbon fiber
    • 6.3.5. Key developments
  • 6.4. Fiber reinforced thermoset dispensing
    • 6.4.1. 3D printing composites: printer processes
    • 6.4.2. Continuous fibre thermoset dispensing
    • 6.4.3. Market leader snapshot: Continuous Composites
    • 6.4.4. Large scale thermoset dispensing processes
  • 6.5. Vat Photopolymerisation
    • 6.5.1. 3D printing composites: printer processes
    • 6.5.2. Vat photopolymerisation: Fortify
    • 6.5.3. Glass reinforced photopolymers
  • 6.6. Emerging methods
    • 6.6.1. 3D printing composites: printer processes
    • 6.6.2. Automating preforming
    • 6.6.3. Alternative thermoplastic extrusion processes
    • 6.6.4. Vat photopolymerisation with post print fiber inclusion

7. 3D PRINTING COMPOSITES: MATERIAL ANALYSIS

  • 7.1. Material feedstock: introduction
  • 7.2. Fibre reinforced thermoplastic filaments
  • 7.3. Material assessment: matrix considerations
  • 7.4. Material assessment: mechanical properties
  • 7.5. Material assessment: price and performance benchmarking
  • 7.6. Complete material list: short carbon fiber
  • 7.7. Complete material list: short glass fiber
  • 7.8. Complete material list: powder
  • 7.9. Complete material list: continuous fiber
  • 7.10. Benchmarking study by independent research institute
  • 7.11. Key material news and developments
  • 7.12. Recycled carbon fiber as feedstock material
  • 7.13. Nanocarbon additive: property advantages
  • 7.14. Nanocarbon additive: commercial activity

8. APPLICATIONS

  • 8.1. End-user application: sector overview
  • 8.2. Application hype curve of CFRP
  • 8.3. Jigs and Fixtures
  • 8.4. Tooling
  • 8.5. Aerospace & Defense
  • 8.6. UAVs and Satellites
  • 8.7. Medical
  • 8.8. Automotive
  • 8.9. Energy
  • 8.10. Marine
  • 8.11. Functional prototyping: embedded sensors
  • 8.12. Sports and luxury goods
  • 8.13. Robotics and drones
  • 8.14. Electronic devices and components

9. MARKET ANALYSIS AND FORECASTS

  • 9.1. Market share: regional distribution
  • 9.2. Market share: technology split
  • 9.3. Investment capital into 3D printing composites
  • 9.4. Forecast methodology and presentation of findings
  • 9.5. Total market forecasts for 3D printing composites
  • 9.6. Market forecasts 3DP composites: cumulative thermoplastic extrusion printer installations
  • 9.7. Market forecasts 3DP composites: thermoplastic extrusion revenue
  • 9.8. Market forecasts 3DP composites: annual thermoplastic extrusion printer sales
  • 9.9. Market forecasts 3DP composites: thermoplastic extrusion printer material demand
  • 9.10. Market forecasts 3DP composites: thermoset revenue

10. COMPANY PROFILES

  • 10.1. Primary interview based company profiles

11. APPENDIX - DATA

  • 11.1. 3D printing composites market 2021-2031: total revenue
  • 11.2. 3D printing composites market 2021-2031: annual printer unit sales
  • 11.3. 3D printing composites market 2021-2031: total material feedstock mass
  • 11.4. 3D printing composites market 2017-2031: revenue thermoplastic extrusion
  • 11.5. 3D printing composites market 2017-2031: annual printer installations desktop and industrial for thermoplastic extrusion
  • 11.6. 3D printing composites market 2017-2031: cumulative printer installations desktop and industrial for thermoplastic extrusion
  • 11.7. 3D printing composites market 2017-2031: annual material demand (mass) split by type
  • 11.8. 3D printing composites market 2017-2031: revenue thermoset printers, services and materials