NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

热电能量收集和来自热能的其他零排放电力:2022-2042年

Thermoelectric Energy Harvesting and Other Zero-Emission Electricity from Heat 2022-2042

出版商 IDTechEx Ltd. 商品编码 1017015
出版日期 内容资讯 英文 287 Slides
商品交期: 最快1-2个工作天内
价格
热电能量收集和来自热能的其他零排放电力:2022-2042年 Thermoelectric Energy Harvesting and Other Zero-Emission Electricity from Heat 2022-2042
出版日期: 2021年06月30日内容资讯: 英文 287 Slides
简介

标题
热电能量收集和其他
2022-2042 年热电零排放

TEG、热电传感器、废热、地热、电动汽车、可穿戴设备、物联网、薄膜、可拉伸、涂漆、CNT、TATWE、TEGSS、RTG、军事、航空航天、热声、低温热收集、热电波、海洋热能转换 OTEC。

"当热电能量收集器研究被重定向时,100 亿美元的业务正在等待。"

热电能量收集器是一项大生意。IDTechEx 的新研究 "2022-2042 年热电能量收集和其他零排放电力" 调查了 100 多个相关组织。它发现,经过几十年的努力,幻灭的制造商分享了仅数亿美元的业务,主要是碲化铋及其变体。每一两年,都会有一个破产。

对比一下每年产生大约 50 篇研究论文、不断增加新项目和合作的大学和研究中心。遗憾的是,许多人仍然专注于有毒和稀有元素,并优先考虑最大化品质因数 ZT。

相比之下,新报告以商业为导向。它确定了大量机会和工业家必须优化以取得成功的参数。分析师 IDTechEx多年来一直使用其全球多语种博士级员工的意见报告热电行业。今年,重写、重新研究的报告扩大了其范围,以反映在某些情况下联合热转换技术可能会派上用场。它评估了 2021 年热电波的发明、新宣布的低温热收集和进步的热声收集,以及良好的旧热释电和海洋热能转换。布朗运动产生的新电是什么?然而,该报告主要关注热电,因为如果重新聚焦,它具有明显的潜力。

本报告为所有参与电力生产的许多新兴形式的热量收集提供服务,例如石油和天然气公司需要它来绿化他们的工厂并实现多样化。它对从研究、材料、设备和系统到集成商的这些价值链中的所有人都具有价值。它还将吸引那些在物联网节点、植入物、可穿戴设备、微电网、电网、军事、航空航天、偏远地区以及无法充电或更换电池以及光伏和其他形式的能量收集的其他应用的未解决电力生产问题的人不切实际或次优。

新的信息图表、20年预测和比较图表很容易被非内部人员掌握。它是分析性的,而非福音派或学术性的。它揭示了市场中的差距,阐明了工业家取得成功所需的条件。

回答的问题包括:
  • 海市蜃楼有哪些潜在应用?为什么?
  • 什么是正品,为什么?
  • 应如何重新调整研究重点以取得商业成功?
  • 按应用领域、数字、单位价值、市场价值预测 2022-2042 年?
  • 2022-2042 年的热电传感器市场?
  • 对研究人员、制造商、用户的分析?
  • 什么是死胡同,什么显示了希望,为什么?
  • 必须由应用程序优化的参数?
  • 可拉伸、靈活、可喷涂、印刷版本的进展和潜力?
  • 它与热波能、热声能、低温热能收集、布朗电、海洋热能转换和热释电相比如何?
  • 涉及的 62 家热电制造商和产品集成商的对比表?

该报告以执行摘要和结论开头,适用于急需大局的人,包括新预测、按国家/地区划分的制造商的新饼图、设备的成本结构等,使用最少的术语。价格如何随额定功率、温差等变化?查看研究管道中一些既不含有毒元素也不含昂贵元素的有前途的材料,以及主导研究的 14 种材料家族。表格给出了各个市场渗透率低的原因以及如何处理。见 27 项主要结论。专利分析。有一个词汇表可以提供帮助。

简介

引言介绍了选项、工作原理、系统和生产线设计。这里是热电传感器的研究以及柔性能量收集和传感器的发展趋势。

低功耗热电材料:柔性、可拉伸、可植入、可穿戴、物联网、MEMS

第 3 章 "低功耗热电:柔性、可拉伸、可植入、可穿戴、物联网、MEMS" 主要涉及 20-100C 的温度,刚性与可弯曲与柔性,主要是医疗保健、消费类可穿戴设备和物联网。瞭解人体可用的热量、与它的耦合问题、设备尺寸要求、与替代品相比可用的热电功率。详细地讲,有 15 家接受评估的机构的令人兴奋的发展以及更多在表格中。

大功率热电

第 4 章 涉及高功率热电,这在今天意味著高温,但在未来将强烈支持 20-300C。这是一个灭蚊器、柴火炉、营火、许多工业废热源量化的世界。ZT 在这里无关紧要,因为与来源更好的耦合是关键——我们在这里取得了突破——以及 LCOE。我们评估集中太阳能中的热电、邻近失效光伏的辐射冷却、建筑外墙、轮胎和道路的潜力。瞭解为什么如果测量和优化正确的参数,热水地热发电在热电和热声方面看起来很有前景。我们仔细研究了工业余热方面的工作,找到了谨慎的理由。这里有些死胡同。引用了新的进步和需求——从潜艇到飞机和场发电机,对七种截然不同的军事应用进行了研究。然后是瓦特的水散热器阀门驱动、远程站点电源和 Teledyne 解决的异国情调。提升太阳能发电和核电站系统的备份是本章充满案例研究的结束主题。

热电材料、热声、低温电、热电、海洋热梯度收集

第 5 章 广泛涵盖了研究中的新热电材料和开始商业化以及接下来会发生什么。第 6 章 是 "新热电和相关收获原理:热电波、量子点、自旋驱动、布朗运动、新理论" ,用简单的英语解释了重要性。第 7 章 评估了 "热声、低温电、热电、海洋热梯度收集" 。

按国家/地区划分的 68 家热电公司

第 8 章的表格比较了 62 家参与热电领域的公司,这些公司在研究、材料、模块或产品集成方面都很活跃。它以 IDTechEx 公司简介的两个示例作为结尾,其中包含成功、弱点、机会、威胁——此类 SWOT 表也出现在前面的文本中。请参阅 IDTech hEx 分析,而不仅仅是新闻整合。访谈、计算和预测是 IDTechEx 报告的特征。

来自 IDTechEx 的分析师访问

购买所有报告都包括最多 30 分钟的电话时间,与一位专家和助理通话,他将帮助您将报告中的关键发现与您正在解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要和结论

  • 1.1. 本报告的目的
  • 1.2. 错误的研究重点
  • 1.3. 主要结论:巨大的可寻址零排放热量进入电力市场
  • 1.4. 主要结论:热电技术选择
  • 1.5。主要结论:热电技术问题
  • 1.6. 热电的意义和成本细分
  • 1.7. 温差、功率差价
  • 1.8。近期的一些研究成果
  • 1.9. 专利分析
  • 1.10. 能量收集选项
    • 1.10.1。上下文中的热电
    • 1.10.2. 热电波
    • 1.10.3. 热声学
    • 1.10.4。低温电学
  • 1.11. 市场预测
    • 1.11.1. 热电能量收集模块的应用2021-2042 - 编号 k
    • 1.11.2. 2021-2042 年应用的热电能量收集模块 - 单位价值美元
    • 1.11.3. 2021-2042 年应用总价值市场的热电能量收集换能器 - 十亿美元
    • 1.11.4。热电传感器和执行器 2019-2042 百万美元
    • 1.11.5。2020-2030年可穿戴技术预测
    • 1.11.6。物联网 LPWAN 连接 2018-2029

2. 简介

  • 2.1. 新兴的热采收
    • 2.1.1. 选择
    • 2.1.2. 研究人员通常优先考虑错误的参数
  • 2.2. 热电
    • 2.2.1. 塞贝克和珀尔帖效应
    • 2.2.2. 热电系统设计
    • 2.2.3. 解决的限制
    • 2.2.4. TEC Microsystems 的警告
    • 2.2.5. 热电收集的设计注意事项
    • 2.2.6. 制造和材料
    • 2.2.7. 柔性、可拉伸、印刷和喷涂热电材料
    • 2.2.8. 解决成本还要这十个方面
  • 2.3. 热电感应
    • 2.3.1. 概述
    • 2.3.2. MEMS热电红外传感器
    • 2.3.3. 微热电气体传感器:氢原子氧
    • 2.3.4. 用作转移标准
    • 2.3.5. 织物传感器
    • 2.3.6. 自供电传感器
    • 2.3.7. 燃气轮机传感
    • 2.3.8. 为 WSN 传感器供电
    • 2.3.9. 铝热剂供电的传感器
    • 2.3.10。greenTEG 瑞士传感器
  • 2.4. 靈活能量收集和传感的趋势

3. 低功耗热电:柔性、可拉伸、可植入、可穿戴、物联网、MEMS

  • 3.1. 概述
  • 3.2. 可穿戴 TEG 的体力和空间
    • 3.2.1. 按位置发射功率
    • 3.2.2. 在人体上使用热电的挑战
    • 3.2.3. 可穿戴设备中的设备尺寸要求
    • 3.2.4. 腕饰趋势
  • 3.3. 与其他可穿戴采集设备相比,热电功率输出
  • 3.4. 柔性和可弯曲的热电
    • 3.4.1. 方法的选择
    • 3.4.2. EXA柔性膜制造工艺的mple
    • 3.4.3. 可弯曲格式
  • 3.5。使用皮肤温度的柔性热电收割机
    • 3.5.1. AIST日本
    • 3.5.2. 美国佐治亚理工学院
    • 3.5.3. KIST韩国
    • 3.5.4. 新加坡国立大学
    • 3.5.5。美国科罗拉多大学博尔德分校
    • 3.5.6。UIUC中国
    • 3.5.7。中国上海理工大学
  • 3.6. 纺织热电
    • 3.6.1. 瑞典查尔姆斯大学
    • 3.6.2. 弗劳恩霍夫FEP GER许多
    • 3.6.3. 棉可穿戴无毒:马萨诸塞大学阿默斯特分校
  • 3.7. 刚性低功率热电元件
    • 3.7.1. 可穿戴设备概览
    • 3.7.2. 物联网概述
    • 3.7.3. Matrix PowerWatch 美国
    • 3.7.4。Seik o Thermic 手表故障
    • 3.7.5。植入式热电起搏器
    • 3.7.6。MEMS 微型 TEG 示例

4. 包括高温在内的大功率热电元件

  • 4.1. 需求和工具包
    • 4.1.1. 高功率概览
    • 4.1.2. Jiko Power USA 面向新兴国家的炉灶电力
  • 4.2. 高功率 TEG 的新兴用途
  • 4.3. 更好的接触以实现高效的热传递
    • 4.3.1. 大功率柔性热电发电机
    • 4.3.2. C旧喷雾沉积:Lawrence Livermore 与 TTEC Thermoelectric USA
  • 4.4. 聚光太阳能 TEG 胜过光伏?沙特国王大学沙特的阿拉伯半岛
  • 4.5。建筑物和道路:夜间辐射冷却而不是电池、外墙 <你>
  • 4.5.1。美国斯坦福大学和加州大学洛杉矶分校
  • 4.5.2. 多热屋顶和外墙:科罗拉多大学、怀俄明州、加利福尼亚州
  • 4.6. 热道路和轮胎:德克萨斯大学圣安东尼奥美国
  • 4.7 。地热发电 中国、日本、印度、德国、英国、美国、加拿大
  • 4.8. 工业余热
    • 4.8.1。现实检查
    • 4.8.2. RGS Development, TEGnology, Komatsu KELK, ll-Vl Marlow, USARGS USA, Japan
    • 4.8.3。Cidete Ingenieros西班牙
    • 4.8.4。日本三菱综合材料
    • 4.8.5。德国帕德博恩大学
  • 4.9. 军事和航空航天:Alteg Systems,美国海军研究生院
    • 4.9.1。概述
    • 4.9.2. 双功能发电机/预冷器:来自飞机引气的直流电源:Alteg USA
    • 4.9.3. 军事废热:美国海军研究生院
    • 4.9.4。蝠□潜艇 Northrop Grumman, Martin USA
    • 4.9.5。陆地车辆推进ATEG:湖北大学中国
    • 4.9.6。军用废料能源:美国海军研究生院
    • 4.9.7。深海军事力量:海事应用物理公司
  • 4.10。水散热器驱动,家庭自动化
    • 4.10.1。EnOcean,H2O 学位 德国,美国
    • 4.10.2. 科特贝德热尔马纽约
    • 4.10.3. Caleffi Hydronic Solutions 意大利
  • 4.11. 远程站点电源 GPT, ll-Vl Marlow USA
  • 4.12. 加拿大全球电力技术公司
  • 4.13. 美国 Teledyne 能源系统公司
  • 4.14. 放射性同位素热电发生器 RTG
  • 4.15。博osting太阳能发电
  • 4.16。核电站备份:加拿大安大略大学

    5. 新型热电材料

    • 5.1. 概述
    • 5.2. 无机材料和复合材料选择的因素
    • 5.3. 示例:二维材料 <李>5.4。材料设计策略
    • 5.5。示例:薄膜和可穿戴热电材料
      • 5.5.1. 概述
      • 5.5.2. A*STAR 香港
      • 5.5.3. 细菌纳米纤维素:西班牙材料科学研究所
      • 5.5.4。氟弹性体橡胶:日本大阪大学
      • 5.5.5。PEDOT:PSS 和复合材料:美国密歇根大学劳伦斯伯克利分校
      • 5.5.6。聚□胺纤维
      • 5.5.7。Poly-GeSn 日本名古屋大学
    • 5.6. 各种其他无机物和复合物
      • 5.6.1. Fe-VW-Al 合金奥地利维也纳技术大学
      • 5.6.2. 方钴矿和其他无机物:休斯顿大学,麻省理工学院美国
    • 5.7. 高温新材料 NASA 美国
    • 5.8。矽、含矽化镍纳米夹杂物的纳米线美国德克萨斯大学等

    6. 新的热电和相关收割原理:热能波、量子点、自旋驱动、布朗运动、新理论

    • 6.1. 概述
    • 6.2. 理论效率更高:美国休斯顿大学
    • 6.3. 热电采集的全新方法
      • 6.3.1. 穿梭:波兰科学院波兰
      • 6.3.2. 量子点热电英国剑桥大学
      • 6.3.3. 自旋驱动热电效应 日本 STE 东北大学
    • 6.4. 布朗运动:美国阿肯色大学
    • 6.5。Thermopower 波电 美国麻省理工学院

    7. 热声、低温、热电、海洋热梯度采集

      <李>7.1。热声发电机
      • 7.1.1. 技术
      • 7.1.2. 效率
      • 7.1.3. 热声发生器 SWOT
    • 7.2. 低温发电机
      • 7.2.1. 技术
      • 7.2.2. 低温发电机 SWOT
    • 7.3. 热发电
      • 7.3.1. 技术
      • 7.3.2. 热释电发电机 SWOT
    • 7.4. 海洋热能转换 OTEC
      • 7.4.1. 技术
      • 7.4.2. 海洋能源研究中心:Makai Ocean Engineering USA
      • 7.4.3. 海洋热能发电机 SWOT

    8. 68家公司对比

  • 目录
    Product Code: ISBN 9781913899578

    Title:
    Thermoelectric Energy Harvesting and Other
    Zero-Emission Electricity from Heat 2022-2042

    TEG, thermoelectric sensors, waste heat, geothermal, EV, wearables, IoT, thin film, stretchable, painted, CNT, TATWE, TEGSS, RTG, military, aerospace, thermoacoustic, cryo heat harvesting, thermopower wave, ocean thermal energy conversion OTEC.

    "Ten billion-dollar business awaits when thermoelectric energy harvester research is redirected."

    Thermoelectric energy harvesters can be a large business. The new IDTechEx study, "Thermoelectric Energy Harvesting and Other Zero-Emission Electricity from Heat 2022-2042" examines over 100 organisations involved. It finds that the disillusioned manufacturers share a business of mere hundreds of millions of dollars after decades of trying, mainly with bismuth telluride and variants. Every year or two, one goes under.

    Contrast the universities and research centres generating about 50 research papers yearly, growing new projects and collaboration. Sadly many still focus on toxic and rare elements and prioritise maximising a figure of merit ZT.

    In contrast, the new report is commercially-oriented. It identifies considerable opportunities and the parameters industrialists must optimise for success. Analysts IDTechEx have reported on thermoelectrics for many years using inputs from its PhD level multilingual staff worldwide. This year, the rewritten, re-researched report expands its scope to reflect that allied heat-converting technologies may come to the rescue in some cases. It appraises the 2021 invention of thermopower wave, newly announced cryo-heat harvesting and progressing thermoacoustic harvesting plus good old pyroelectrics and ocean thermal energy conversion. What of the new electricity from Brownian motion? However, the report mainly concerns thermoelectrics because that has clear potential if refocussed.

    This report serves all involved in the many emerging forms of heat harvesting for electricity production for example oil and gas companies needing this to green their plants and diversify. It is valuable for all in these value chains from research, materials, devices and systems to integrators. It will also interest those with unsolved problems of electricity production for internet of things nodes, implants, wearables, microgrids, grids, military, aerospace, remote locations and other applications where batteries cannot be charged or changed and photovoltaics and other forms of energy harvesting are impractical or suboptimal.

    The new infograms, 20-year forecasts and comparison charts are easily grasped by those who are not insiders. It is analytical not evangelical or academic. It reveals gaps in the market, clarifies what industrialists need for success.

    Questions answered include:

    • What potential applications are a mirage and why?
    • What are genuine and why?
    • How should the research be refocussed to create commercial success?
    • Forecasts 2022-2042 by application sector, numbers, unit value, market value?
    • Market for thermoelectric sensors 2022-2042?
    • Analysis of researchers, manufacturers, users?
    • What are dead ends, what shows promise and why?
    • Parameters that must be optimised by application?
    • Progress and potential with stretchable, flexible, sprayable, printed versions?
    • How does it compare to thermowave power, thermoacoustic power, cryo-heat harvesting, Brownian electricity, ocean thermal energy conversion and pyroelectrics?
    • Comparison tables of 62 thermoelectric manufacturers and product integrators involved?

    The report commences with Executive Summary and Conclusions for those in a hurry needing the big picture including new forecasts, new pie charts of manufacturers by country, cost structure of a device and so on with minimal jargon. How does price move with power rating, temperature difference and so on? See some promising materials in the research pipeline that neither have toxic nor expensive elements in them and the 14 materials families dominating research. Tables give reasons for poor penetration of various markets and what to do about it. See 27 primary conclusions. Patent analysis. There is a glossary to assist.

    Introduction

    The Introduction presents the options, working principles, systems and production line design. Here is the study of thermoelectric sensors and the trend to flexible energy harvesting and sensors.

    Low-power thermoelectrics: flexible, stretchable, implantable, wearable, IoT, MEMS

    Chapter 3 "Low-power thermoelectrics: flexible, stretchable, implantable, wearable, IoT, MEMS" mostly concerns temperatures of 20-100C, rigid vs bendable vs flexible and mainly healthcare, consumer wearables and IoT. Learn the heat available on the human body, the coupling issues to it, device size requirements, thermoelectric power available compared to alternatives. In detail, there are exciting developments from 15 institutions appraised and many more in tables.

    High power thermoelectrics

    Chapter 4 concerns high power thermoelectrics which today means high temperature but in future will strongly embrace 20-300C. This is a world of mosquito zappers, electricity from wood stoves, camp fires, the many industrial waste heat sources quantified. ZT matters little here because better coupling to source is key - we give breakthroughs here - and LCOE. We appraise thermoelectrics in concentrated solar power, radiative cooling at nigh offsetting dead photovoltaics, potential on building facades, tires, roads. Understand why hot-water geothermal power looks promising with thermoelectrics and thermoacoustics if the right parameters are measured and optimised. We closely examine work on industrial waste heat finding reasons to be cautious. Some dead ends here. Seven very different military applications are examined citing new advances and needs - submarines to aircraft and field generators. Then comes water radiator valve actuation at watts, remote site power and the exotica addressed by Teledyne. Boosting solar power and backup of nuclear plant systems are the closing topics of this chapter full of case studies.

    Thermoelectric materials, thermoacoustic, cryoelectric, pyroelectric, ocean thermal gradient harvesting

    Chapter 5 extensively covers new thermoelectric materials in research and starting commercialisation and what to expect next. Chapter 6 is "New thermoelectric and allied harvesting principles: thermopower waves, quantum dot, spin-driven, Brownian motion, new theories" in plain English, explaining significance. Chapter 7 assesses, "Thermoacoustic, cryoelectric, pyroelectric, ocean thermal gradient harvesting".

    68 companies involved in thermoelectrics by country

    Chapter 8 has tables comparing 62 companies involved in thermoelectrics by country, where active in research, materials, modules or product integration. It ends with two examples of IDTechEx company profiles with success, weaknesses, opportunities, threats - such SWOT tables also appearing in the earlier text. See IDTechEx analysis, not just consolidation of news. Interviews, calculations, and prediction are characteristic of IDTechEx reports.

    Analyst access from IDTechEx

    All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

    TABLE OF CONTENTS

    1. EXECUTIVE SUMMARY AND CONCLUSIONS

    • 1.1. Purpose of this report
    • 1.2. Wrong research emphasis
    • 1.3. Primary conclusions: huge addressable zero-emission heat to electricity market
    • 1.4. Primary conclusions: Technology options for electricity from heat
    • 1.5. Primary conclusions: Thermoelectrics technical issues
    • 1.6. Significance and cost breakdown of thermoelectrics
    • 1.7. Price difference with temperature difference and power
    • 1.8. Some recent research results
    • 1.9. Patent analysis
    • 1.10. Energy harvesting options
      • 1.10.1. Thermoelectrics in context
      • 1.10.2. Thermopower wave
      • 1.10.3. Thermoacoustics
      • 1.10.4. Cryoelectrics
    • 1.11. Market forecasts
      • 1.11.1. Thermoelectric energy harvesting modules by application 2021-2042 - number k
      • 1.11.2. Thermoelectric energy harvesting modules by application 2021-2042 - unit value dollars
      • 1.11.3. Thermoelectric energy harvesting transducers by application total value market 2021-2042 - $bn
      • 1.11.4. Thermoelectric sensors and actuators 2019-2042 $ million
      • 1.11.5. Wearable technology forecast 2020-2030
      • 1.11.6. IoT LPWAN connections 2018-2029

    2. INTRODUCTION

    • 2.1. Emerging thermal harvesting
      • 2.1.1. Choices
      • 2.1.2. Researchers usually prioritise wrong parameters
    • 2.2. Themoelectrics
      • 2.2.1. Seebeck and Peltier effects
      • 2.2.2. Thermoelectric system design
      • 2.2.3. Limitations to address
      • 2.2.4. Caution from TEC Microsystems
      • 2.2.5. Design considerations for thermoelectric harvesting
      • 2.2.6. Manufacturing and materials
      • 2.2.7. Flexible, stretchable, printed and spray-on thermoelectrics
      • 2.2.8. Tackle cost but also these ten aspects
    • 2.3. Thermoelectric sensing
      • 2.3.1. Overview
      • 2.3.2. MEMS thermoelectric infrared sensors
      • 2.3.3. Micro-thermoelectric gas sensor: hydrogen and atomic oxygen
      • 2.3.4. Use as transfer standards
      • 2.3.5. Fabric sensors
      • 2.3.6. Self-powered sensors
      • 2.3.7. Gas turbine sensing
      • 2.3.8. Powering a WSN sensor
      • 2.3.9. Thermite-powered sensor
      • 2.3.10. greenTEG Switzerland sensors
    • 2.4. Trend to flexible energy harvesting and sensing

    3. LOW-POWER THERMOELECTRICS: FLEXIBLE, STRETCHABLE, IMPLANTABLE, WEARABLE, IOT, MEMS

    • 3.1. Overview
    • 3.2. Body power and space for wearable TEGs
      • 3.2.1. Power emitting by location
      • 3.2.2. Challenge with using thermoelectrics on the human body
      • 3.2.3. Device size requirements in wearables
      • 3.2.4. Trends for wristwear
    • 3.3. Thermoelectric power output compared to other wearable harvesting
    • 3.4. Flexible and bendable thermoelectrics
      • 3.4.1. Choice of approaches
      • 3.4.2. Example of a flexible film manufacturing process
      • 3.4.3. Bendable formats
    • 3.5. Flexible thermoelectric harvesters using skin temperature
      • 3.5.1. AIST Japan
      • 3.5.2. GeorgiaTech USA
      • 3.5.3. KIST Korea
      • 3.5.4. National University of Singapore
      • 3.5.5. University of Colorado Boulder USA
      • 3.5.6. UIUC China
      • 3.5.7. Shanghai Institute of Technology China
    • 3.6. Textile thermoelectrics
      • 3.6.1. Chalmers University Sweden
      • 3.6.2. Fraunhofer FEP Germany
      • 3.6.3. Cotton wearable non-toxic: University of Massachusetts Amherst
    • 3.7. Rigid low-power thermoelectrics
      • 3.7.1. Wearables overview
      • 3.7.2. Internet of Things overview
      • 3.7.3. Matrix PowerWatch USA
      • 3.7.4. Seiko Thermic watch failure
      • 3.7.5. Implantable thermoelectric pacemakers
      • 3.7.6. MEMS Micro TEG examples

    4. HIGH-POWER THERMOELECTRICS INCLUDING HIGH TEMPERATURE

    • 4.1. Needs and toolkit
      • 4.1.1. High power overview
      • 4.1.2. Jiko Power USA stove electricity for emerging countries
    • 4.2. Emerging uses of high power TEGs
    • 4.3. Better contact for efficient heat transfer
      • 4.3.1. High power flexible thermoelectric generators
      • 4.3.2. Cold-spray deposition: Lawrence Livermore with TTEC Thermoelectric USA
    • 4.4. Concentrated solar TEG beats photovoltaics? King Saud University Saudi Arabia
    • 4.5. Buildings and roads: radiative cooling at night instead of batteries, facades
      • 4.5.1. Stanford University and University of California Los Angeles USA
      • 4.5.2. Multi-thermal roof and facades: Universities of Colorado, Wyoming, California
    • 4.6. Thermal roads and tires: University of Texas San Antonio USA
    • 4.7. Geothermal power generation China, Japan, India, Germany, UK, USA, Canada
    • 4.8. Industrial waste heat
      • 4.8.1. Reality check
      • 4.8.2. RGS Development, TEGnology, Komatsu KELK, ll-Vl Marlow, USARGS USA, Japan
      • 4.8.3. Cidete Ingenieros Spain
      • 4.8.4. Mitsubishi Materials Japan
      • 4.8.5. Paderborn University Germany
    • 4.9. Military and aerospace: Alteg Systems, Naval Postgraduate School USA
      • 4.9.1. Overview
      • 4.9.2. Bi-functional generator/ pre-cooler: DC power from aircraft bleed air: Alteg USA
      • 4.9.3. Military waste heat: Naval Postgraduate School USA
      • 4.9.4. Manta Ray submarine Northrop Grumman, Martin USA
      • 4.9.5. Vehicle propulsion ATEG on land: Hubei University China
      • 4.9.6. Military waste energy: US Naval Postgraduate School
      • 4.9.7. Deep sea military power: Maritime Applied Physics Corporation
    • 4.10. Water radiator actuation, home automation
      • 4.10.1. EnOcean, H2O Degree Germany, USA
      • 4.10.2. Kieback & Peter Germany
      • 4.10.3. Caleffi Hydronic Solutions Italy
    • 4.11. Remote site power GPT, ll-Vl Marlow USA
    • 4.12. Global Power Technologies Canada
    • 4.13. Teledyne Energy Systems USA
    • 4.14. Radioisotope Thermoelectric generator RTG
    • 4.15. Boosting solar power
    • 4.16. Nuclear plant backup: University of Ontario Canada

    5. NEW THERMOELECTRIC MATERIALS

    • 5.1. Overview
    • 5.2. Factors in inorganic materials and composites selection
    • 5.3. Example: 2D materials
    • 5.4. Materials design strategies
    • 5.5. Example: Thin film and wearable thermoelectric materials
      • 5.5.1. Overview
      • 5.5.2. A*STAR Hong Kong
      • 5.5.3. Bacterial nanocellulose: Institute of Materials Science Spain
      • 5.5.4. Fluoro-elastomer rubbers: Osaka University Japan
      • 5.5.5. PEDOT:PSS and composite: University of Michigan, Lawrence Berkeley USA
      • 5.5.6. Polyamide fiber
      • 5.5.7. Poly-GeSn Nagoya University Japan
    • 5.6. various other inorganics and composites
      • 5.6.1. Fe-V-W-Al alloy Technical University of Vienna Austria
      • 5.6.2. Skutterudites and other inorganics: University of Houston, MIT USA
    • 5.7. New materials for high temperatures NASA USA
    • 5.8. Silicon, nanowires with nickel silicide nano-inclusions University of Texas etc USA

    6. NEW THERMOELECTRIC AND ALLIED HARVESTING PRINCIPLES: THERMOPOWER WAVES, QUANTUM DOT, SPIN-DRIVEN, BROWNIAN MOTION, NEW THEORIES

    • 6.1. Overview
    • 6.2. Higher efficiencies in theory: University of Houston USA
    • 6.3. Radically new approaches to thermoelectric harvesting
      • 6.3.1. Shuttling: Polish Academy of Sciences Poland
      • 6.3.2. Quantum dot thermoelectric Cambridge University UK
      • 6.3.3. Spin driven thermoelectric effect STE Tohoku University Japan
    • 6.4. Brownian motion: University of Arkansas USA
    • 6.5. Thermopower wave electricity MIT USA

    7. THERMOACOUSTIC, CRYOELECTRIC, PYROELECTRIC, OCEAN THERMAL GRADIENT HARVESTING

    • 7.1. Thermoacoustic electricity generators
      • 7.1.1. Technology
      • 7.1.2. Efficiency
      • 7.1.3. Thermoacoustic generator SWOT
    • 7.2. Cryoelectric generator
      • 7.2.1. Technology
      • 7.2.2. Cryoelectric generator SWOT
    • 7.3. Pyroelectric generation
      • 7.3.1. Technology
      • 7.3.2. Pyroelectric generator SWOT
    • 7.4. Ocean thermal energy conversion OTEC
      • 7.4.1. Technology
      • 7.4.2. Ocean Energy Research Center: Makai Ocean Engineering USA
      • 7.4.3. Ocean Thermal Energy Generator SWOT

    8. 68 COMPANIES COMPARED