NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

5G小型基地台(2021-2031):技术、市场、预测

5G Small Cells 2021-2031: Technologies, Markets, Forecast

出版商 IDTechEx Ltd. 商品编码 1017014
出版日期 内容资讯 英文 273 Slides
商品交期: 最快1-2个工作天内
价格
5G小型基地台(2021-2031):技术、市场、预测 5G Small Cells 2021-2031: Technologies, Markets, Forecast
出版日期: 2021年07月01日内容资讯: 英文 273 Slides
简介

标题
2021-2031 年 5G小型基地台:技术、市场、预测
5G sub-6 GHz 和毫米波小型基地台(mic rocells、picocells、femtocells)区域市场预测、5G小型基地台关键技术基准、供应炼和参与者评估。

"到 2031 年将安装 4500 万个 5G小型基地台。"

经过我们专注于 5G 和半导体的分析师进行了一段时间的专门研究,IDTechEx 发布了这份报告,提供了对全球 5G小型基地台市场的独特见解。该报告包含对 5G sm all cell供应链的全面分析,其中包括对技术创新和市场动态的详细评估。本报告还提供了有关 5G小型基地台支持的关键垂直应用的全面而详细的案例研究。重要的是,该报告基于我们在 5G 行业的专业知识,对通过与主要参与者的访谈收集的主要数据进行了公正的分析。

这份报告提供了以下方面的宝贵见解:

  • 为5G小型基地台提供组件和材料的公司*
  • 开发 5G小型基地台的公司
  • 投资 5G 基础设施的公司
  • 为行业开发数字解决方案的公司

为什么小型基地台在 5G 时代如此重要

5G 包含两个新频段:sub-6 GHz (3-7 GHz) 和毫米波 (24-48 GHz),与 5G 相比,5G 提供了更大的带宽、更低的延迟、更高的可靠性和更多的连接前几代移动网络。5G 的优势不仅可以加速移动消费者网络的发展,而且还具有彻底改变汽车、娱乐、计算和制造等行业的巨大潜力。

但是,在我们充分享受这些好处之前,还需要解决一系列挑战。主要挑战之一是高频信号的信号衰减。这意味著与之前的蜂窝网络(如 3G 和 4G)相比,信号传播要短得多。提出了小型蜂窝来应对这一巨大挑战。通过部署更多小型基地台来创建超密集网络在 5G 中起著关键作用,因为它可以补充宏网络,从而提高数据容量。

小型基地台可根据输出功率分为三种类型:毫微微基站、微微基站和微基站。由于与宏基站相比,它们的尺寸更小,因此材料选择和整体技术趋势将与宏基础设施不同。

2021-2031 年 5G小型基地台:技术、市场、预测 - 5G小型基地台技术基准

在本报告中,IDTechEx 对 5G小型基地台(低于 6 GHz 和毫米波)进行了全面分析,包括技术基准和供应炼格局:

  • 5G小型基地台供应商格局分析
  • 5G小型基地台功率放大器和滤波器等射频 (RF) 组件的供应炼和技术分析
  • 5G小型基地台的半导体选择
  • 天线集成封装 (AiP) 解决方案
  • EMI 屏蔽
  • 5G小型基地台的热管理

5G小型基地台使□□一切事物变得智能化,从而重塑我们的社会。

截至 2021 年年中,大多数 5G 商用部署仍侧重于增强型移动宽带——安装 5G 宏基站,为使用移动设备的消费者提供高容量网络。然而,工业物联网 4.0、蜂窝车联网 (C-V2X)、新娱乐体验和智慧城市等新用例才是真正的创新正在发生和巨大的市场潜力所在。根据我们对该领域主要参与者的研究和采访,5G小型基地台将在支持这些行业实现完全数字化和实现潜力方面发挥关键作用。

在本报告中,IDTechEx 对选定的具有巨大市场潜力的垂直行业进行了深入的案例研究,其中包括:

  • 面向工业 4.0 的 5G 专用网络
  • 面向室内/半室内企业的 5G
  • 用于自动驾驶和 C-V2X 的 5G
  • 新用例 IDTechEx 被认定为高潜力应用

2021-2031 年 5G小型基地台:技术、市场、预测 - 5G小型基地台潜在部署场景

5G小型基地台市场分析:巨大的市场潜力摆在我们面前。

综合市场分析提供了基于不同类型(毫微微蜂窝、微微蜂窝和微蜂窝)、不同频率(低于 6 GHz 与毫米波)、不同的 5G 小蜂窝的十年市场预测(2021-2031)场景(企业、城市、农村和偏远地区)和五个全球区域(东亚、北美、欧洲、南亚等)。

我们的 5G小型基地台市场预测基于对主要和次要数据的广泛分析,并结合对市场驱动因素、限制因素和主要参与者活动的仔细考虑。我们的 5G 小基站市场模型考虑了以下变量在预测期内如何演变:5 个地区的 sub-6 GHz 和毫米波的发展和采用率,宽带和关键物联网 (IoT) 的增长应用、企业、城市、农村和偏远地区的 5G 部署潜力,以及每个场景下不同类型小基站的利用率。

该报告还包括从基础设施供应商到电信运营商的全球主要参与者的全面公司概况。

来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师进行长达 30 分钟的电话通话,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要

  • 1.1. 5G 商用/预商用服务(2021 年 6 月)
  • 1.2. 5G,下一代蜂窝通信网络
  • 1.3. 两种类型的 5G:低于 6 GHz 和毫米波
  • 1.4. 5G 服务的 3 种主要类型
  • 1.5。超密集网络 (UDN) 部署的驱动程序:
  • 1.6. 5G中小型基地台的定义
  • 1.7. 5G Small Cell 潜在部署场景
  • 1.8。5G网络趋势:运营商更容易部署
  • 1.9. 小型基地台供应商格局
  • 1.10. 开发基站的前端结构的换货趋势
  • 1.11. 5G 小型基地台中 RF(射频)组件的关键半导体特性
  • 1.12。5G 带来了移动应用程序之外的新用例
  • 1.13. 5G赋能更多市场机会
  • 1.14. 5G专网部署兴起
  • 1.15。工业 4.0 中 5G 专网的剩余挑战
  • 1.16。室内/半室内企业蜂窝网络
  • 1.17. 并非每个室内/半室内场所都需要 5G
  • 1.18. 5G 对比 Wi-Fi 6/Wi-Fi 6E
  • 1.19. 5G&Wi-Fi 6/6E共存场景
  • 1.20。当今物联网的无线网络选项
  • 1.21. 5G小型基地台预测(2021-2031)按频率(累计安装)
  • 1.22。按类型划分的 5G小型基地台数量预测(2021-2031)
  • 1.23。按地区划分的 5G sub-6 GHz 小基站数量预测(2021-2031)
  • 1.24。按地区划分的 5G 毫米波小基站数量预测(2021-2031)

2. 5G - 概述

  • 2.1. 5G,下一代蜂窝通信网络
  • 2.2. 两种类型的 5G:低于 6 GHz 和毫米波
  • 2.3. 5G 商用/预商用服务(2021 年 6 月)
  • 2.4. 两种类型的 5G:低于 6 GHz 和毫米波
  • 2.5. 已分配/目标5G 频谱的全球快照
  • 2.6. 5G 服务的 3 种主要类型
  • 2.7. 从 1G 到 5G:蜂窝网络基础设施的演进
  • 2.8. 5G 无线接入网 (RAN) 架构
  • 2.9. 5G部署关键技术突破:1.移动边缘计算(MEC)
  • 2.10. 5G部署关键技术突破:2、端到端网络切片
  • 2.11. 5G 的挑战
  • 2.12. 超密集网络 (UDN) 部署的驱动程序:

3. 5G小蜂窝简介

    <我>3.1。5G中小型基地台的定义
  • 3.2. 5G Small Cell部署场景
  • 3.3. 5G室内数字化解决方案:1、分布式室内系统——1
  • 3.4. 5G室内数字化解决方案:1、分布式室内系统——2
  • 3.5。5G室内数字化解决方案:2.一体机集成小基站
  • 3.6. 5G室外微蜂窝
  • 3.7. 5G网络趋势:运营商更容易部署
  • 3.8. 5G小基站关键趋势总结

4. 5G小细胞供应链分析

  • 4.1. 5G小型基地台厂商
    • 4.1.1. 小型蜂窝供应商格局
    • 4.1.2. 主要 5G 基础设施供应商的竞争格局
    • 4.1.3. 商用 5G 小型基地台
  • 4.2. 波束形成Antenn一
    • 4.2.1. 预测天线性能的关键指标
    • 4.2.2. 波束成形技术:模拟和数字
    • 4.2.3. 毫米波基站的混合波束成形
    • 4.2.4. 相控阵天线前端密度
    • 4.2.5 . 5G天线的趋势
    • 4.2.6. 用于 5G 毫米波基站的印刷微带天线
    • 4.2.7. 5G毫米波天线拆解(一)
    • 4.2.8。5G毫米波天线拆解(2)
    • 4.2.9. 5G毫米波天线拆解(3)
    • 4.2.10。顶级基础设施供应商与天线功能垂直集成
  • 4.3. 5G 射频组件
    • 4.3.1. 5G sub-6 GHz 基站中的射频前端组件
    • 4.3.2. 射频前端 (RFFE) 模块
    • 4.3.3. □ □F前端组件在5G毫米波基站
    • 4.3.4. 用于射频前端 (RFFE) 的半导体的关键特性
    • 4.3.5. 关键半导体特性
    • 4.3.6. 半导体的选择用于不同类型的基地ST的放大器ations
    • 4.3.7。功率放大器技术的功率与频率图
    • 4.3.8。功率放大器半导体技术的选择
    • 4.3.9。射频放大器供应商公司简介
    • 4.3.10。安普隆
    • 4.3.11。一个nalog设备
    • 4.3.12。Cree-Wolfspeed
    • 4.3.13。Wolfspeed GaN-on-SiC 的采用
    • 4.3.14。英飞凌
    • 4.3.15。马科姆
    • 4.3.16。三菱电机
    • 4.3.17。三菱电机
    • 4.3.18。诺斯罗普格鲁曼公司
    • 4.3.1 9. 恩智浦半导体
    • 4.3.20。恩智浦半导体
    • 4.3.21。科沃
    • 4.3.22。Qorvo 6 GHz 以下产品
    • 4.3.23。Qorvo 毫米波产品
    • 4.3.24。RFHIC
    • 4.3.25。住友电工
    • 4.3.26。过滤器
    • 4.3.27。用于低于6 GHZ 小基站的滤波器
    • 4.3.28。低于 6 GHZ 小基站的滤波器:SAW 和 BAW
    • 4.3.29。低于 6 GHZ 小基站的滤波器:SAW 和 BAW
    • 4.3.30。用于低于 6 GHz 小基站的 BAW 滤波器
    • 4.3.31。毫米波小基站滤波器
    • 4.3.32。传输线滤波器 (1):基板集成波导滤波器 (SIW)
    • 4.3.33。传输线滤波器(2.1):PCB上的单层传输线滤波器
    • 4.3.34。传输线滤波器(2.2):陶瓷上的单层传输线滤波器
    • 4.3.35。传输线滤波器 (2.3):其他基板选项:薄膜或厚膜和玻璃
    • 4.3.36。传输线滤波器 (3):多层低温共烧陶瓷 (LTCC) 滤波器
    • 4.3.37。多层LTCC:生产挑战
    • 4.3.38。来自主要供应商的多层 LTCC 示例 (1)
    • 4.3.39。来自主要供应商的多层 LTCC 示例 (2)
    • 4.3.40。对不同的传输线滤波器进行基准测试
    • 4.3.41。过滤技术总结
    • 4.3.42。用于封装中毫米波天线 (AiP) 的异构封装集成
    • 4.3.43。低损耗材料是 5G 毫米波 AiP 的关键
    • 4.3.44。AiP 的低损耗材料:影响材料选择的五个重要指标
    • 4.3.45。AiP 低损耗材料概述
    • 4.3.46。5G 毫米波 AiP 的低损耗材料选择
    • 4.3.47。主要低损耗材料供应商格局
    • 4.3.48。商业化的低损耗有机laminat的基准ES
    • 4.3.49。AiP 低损耗材料的基准
    • 4.3.50。概括
    • 4.3.51。5G 的电磁干扰 (EMI) 屏蔽
    • 4.3.52。什么是电磁干扰屏蔽以及为什么它对 5G 很重要
    • 4.3.53。C需要EMI屏蔽omponents
    • 4.3.54。5G 设备 EMI 屏蔽的挑战和主要趋势
    • 4.3.55。封装级 EMI 屏蔽
    • 4.3.56。敷形涂层:越来越受欢迎
    • 4.3.57。哪些供应商和元素使用了 EMI 屏蔽?
    • 4.3.58。保形屏蔽工艺概述
    • 4.3.59。PVD溅射的现有工艺是什么?
    • 4.3.60。喷涂 EMI 屏蔽:工艺和优点
    • 4.3.61。丝网印刷 EMI 屏蔽:工艺和优点
    • 4.3.62。针对基于墨水的共形 EMI 屏蔽的供应商
    • 4.3.63。EMI 屏蔽:喷墨印刷无颗粒银油墨
    • 4.3.64。EMI 屏蔽:喷墨印刷的无颗粒银油墨
    • 4.3.65。基于墨水的解决方案是否已被商业采用?
    • 4.3.66。复杂包装的分区化是一个关键趋势
    • 4.3.67。使用印刷油墨进行磁屏蔽的价值主张
    • 4.3.68。5G 小基站的热管理
    • 4.3.6 9. 受温度影响的组件
    • 4.3.70。TIM 示例:三星 5G 接入点
    • 4.3.71。TIM 示例:三星户外 CPE 装置
    • 4.3.72。TIM 示例:三星室内 CPE 单元
    • 4.3.73。Boyd 对接入点的热设计的看法
    • 4.3.74。Cradlepoint 的宽带适配器
    • 4.3.75。华为5G CPE单元
    • 4.3.76。瞄准 5G 应用的 TIM 供应商

5. 超越移动设备的 5G 垂直小蜂窝

  • 5.1. 工业4.0的5G专网
    • 5.1.1. 5G 网络支持互联行业和自动化的三个原因
    • 5.1.2. 专用网络对于 5G 新用例很重要
    • 5.1.3. 专用频谱是释放私有网络潜力的关键
    • 5.1.4. 面向互联行业的公共、混合和专用网络
    • 5.1.5。对互联行业公共网络的担忧
    • 5.1.6。私有网络的利益相关者和激励
    • 5.1.7。5G专网部署兴起
  • 5.2. 工业 4.0 5G 专网案例研究
    • 5.2.1. 在工厂中使用无线 5G 更新现有工业网络
    • 5.2.2. 工业 4.0 案例研究的 5G 专网:博世
    • 5.2.3。工业 4.0 案例研究的 5G 专网:德国斯图加特的博世工厂
    • 5.2.4. Qualcomm 展示的适用于工业 4.0 用例的 5G 专用网络 - 1
    • 5.2.5。Qualcomm展示的面向工业 4.0 的 5G 专网案例研究- 2
    • 5.2.6. 工业4.0的5G专网案例研究:台灣日月光集团全球首个毫米波智能工厂
    • 5.2.7。5G专用网络产业4.0案例研究:全球首款智能毫米波厂日月光集团在大灣
    • 5.2.8。工业 4.0 案例研究的 5G 专用网络:Siticom 与 Airspan Networks 合作,为德国的各个垂直行业提供 5G
    • 5.2.9。用于工业 4.0 的 5G 专网案例研究:ADVA 合作伙伴为德国的一家光学工厂提供 5G 专网
    • 5.2.10。工业 4.0 的 5G 专网与 Wi-Fi
    • 5.2.11。5G 专网 - 非独立 (NSA) 或独立 (SA) 5G?
    • 5.2.12。工业4.0的 5G 专网的剩余挑战
  • 5.3. 室内/半室内企业(不包括制造业)
    • 5.3.1. 室内/半室内企业蜂窝网络
    • 5.3.2. 蜂窝信号难以访问的场景
    • 5.3.3. TW O方法部署在室内/半室内场地蜂窝网络
    • 5.3.4. DAS 和 SCS 的优缺点
    • 5.3.5。支持多个运营商和频段的中立主机小基站
    • 5.3.6. 4G 室内案例研究 - 康普针对沙特阿拉伯地铁网络的 DAS 解决方案
    • 5.3.7。4G/5G 室内案例研究 - 康普为英国医院提供的 SCS 解决方案
    • 5.3.8。5G室内案例研究——爱立信企业办公楼SCS解决方案
    • 5.3.9。5G 室内案例研究 - Airspan 的英国智能校园SCS解决方案
    • 5.3.10。5G室内案例——华为中国国家体育场SCS解决方案
    • 5.3.11。并非每个室内/半室内场所都需要 5G
  • 5.4. 自动驾驶和 C-V2X
      <李>5.4.1。车联网 (V2X)
    • 5.4.2. 为什么车对一切 (V2X) 很重要,尤其是对于未来的自动驾驶汽车 - 1
    • 5.4.3. 为什么车对一切 (V2X) 很重要,尤其是对于未来的自动驾驶汽车 - 2
    • 5.4.4. 两种 V2X 技术:Wi-Fi 与蜂窝
    • 5.4.5。基于 Wi-Fi 和蜂窝的 V2X 通信的详细比较
    • 5.4.6. 监管:基于 Wi-Fi 与 C-V2X
    • 5.4.7。C-V2X助力智能出行发展
    • 5.4.8。C-V2X 如何支持智能移动
    • 5.4.9。C-V2X 部署时间表
    • 5.4.10。C-V2X技术架构
    • 5.4.11。C-V2X包括两部分:通过基站或直接通信
    • 5.4.12。通过基站的C-V2X :车辆到网络 (V2N)
    • 5.4.13。C-V2X 用例和应用概述
    • 5.4.14。5G 技术使 C-V2X 的直接通信成为可能
    • 5.4.15。用于自动驾驶用例的 C-V2X
    • 5.4.16。案例研究:5G为自动驾驶提供全面视图
    • 5.4.17。案例研究:5G 支持高清内容和驾驶辅助系统
    • 5.4.18。案例研究:2022 年的福特 C-V2X
    • 5.4.19。到目前为止的进展
    • 5.4.20。供应炼格局
    • 5.4.21。用于自动驾驶汽车的 5G:5GAA
  • 5.5。5G 新用例:除了我们已知的那些用例之外,还有哪些其他潜在的 5G 用例?
    • 5.5.1. 5G带来更多机会
    • 5.5.2. 数字孪生环境中 5G 解决方案的验证和认证

6. 5G 小蜂窝 VS 其他无线技术

  • 6.1. 无线上网
  • 6.2. Wi-Fi 6 - 有哪些关键技术突破?
  • 6.3. 5G 对比 Wi-Fi 6/Wi-Fi 6E
  • 6.4。5G&Wi-Fi 6/6E共存场景
  • 6.5。物联网的 5G

7. 5G小电池市场预测与展望

  • 7.1. 预测方法

8. 公司简介

目录
Product Code: ISBN 9781913899585

Title:
5G Small Cells 2021-2031: Technologies, Markets, Forecast
5G sub-6 GHz & mmWave small cells (microcells, picocells, femtocells) regional market forecasts, 5G small cell key technology benchmarking, supply chain, and player assessment.

"45 million of 5G small cells will be installed by 2031."

Following a period of dedicated research by our analysts specializing in 5G and semiconductors, IDTechEx published this report offering unique insights into the global 5G small cells market. The report contains a comprehensive analysis of supply chains across 5G small cells, which includes a detailed assessment of technology innovations and market dynamics. This report also provides comprehensive and detailed case studies on key vertical applications enabled by 5G small cells. Importantly, the report presents an unbiased analysis of primary data gathered via our interviews with key players, and builds on our expertise in the 5G industry.

This report delivers valuable insights for:

  • Companies that supply components and materials for 5G small cells*
  • Companies that develop 5G small cells
  • Companies that invest in the 5G infrastructures
  • Companies that develop digital solutions for industries

Why small cells are so important in the 5G era

With two new frequency bands: sub-6 GHz (3-7 GHz) and mmWave (24-48 GHz) included in 5G, 5G provides much larger bandwidth, lower latency, higher reliability, and many more connections in comparison with previous generations of mobile networks. The benefit of 5G not only accelerates the growth of mobile consumer networks but also has huge potential to revolutionize industries such as automotive, entertainment, computing, and manufacturing.

However, there are a series of challenges that need to be addressed before we can fully enjoy the benefits. One of the main challenges is the signal attenuation of high-frequency signals. This means that the signal propagation is much shorter compared to the previous cellular networks such as 3G and 4G. Small cells are proposed to address this big challenge. Creating an ultra-dense network by deploying more small cells plays a key role in 5G as it allows to complement the macro network and therefore boosts data capacity.

Small cells can be categorized into three types: femtocells, picocells, and microcells, depending on their output power. Because of their smaller size compared to macro base stations, the material choices and the overall technology trend will be different from their macroinfrastructure counterparts.

5G Small Cells 2021-2031: Technologies, Markets, Forecasts - 5G small cells technology benchmark

In this report, IDTechEx provides a comprehensive analysis on 5G small cells (both sub-6 GHz and mmWave) including technology benchmarking and supply chain landscape:

  • 5G small cells vendor landscape analysis
  • Supply chain and technology analysis on Radiofrequency (RF) components such as power amplifier and filters for 5G small cells
  • Choices of semiconductors for 5G small cells
  • Antenna-integrated package (AiP) solutions
  • EMI shielding
  • Thermal management for 5G small cells

5G small cells enable the intelligence of everything that will reshape our society.

As of mid-2021, the majority of 5G commercial rollouts are still focused on enhanced mobile broadband - installing 5G macro base stations to provide networks with high capacity for consumers using mobile devices. However, the new use cases such as industrial IoT 4.0, cellular vehicle to everything (C-V2X), new entertainment experiences, and smart cities, are where the real innovations are occurring and the huge market potential lies. From our research and interviews with key players in the field, 5G small cells will play a key role in supporting those industries to become fully digitalized and the potential realised.

In this report, IDTechEx provides in-depth case studies on selected verticals with huge market potential, which include:

  • 5G private networks for Industry 4.0
  • 5G for indoor/semi-indoor enterprises
  • 5G for autonomous driving and C-V2X
  • New use cases IDTechEx identify as high potential applications

5G Small Cells 2021-2031: Technologies, Markets, Forecasts - 5G small cell potential deployment scenarios

5G small cells market analysis: the big market potential awaiting in front of us.

The comprehensive market analysis provides a ten-year market forecast (2021-2031) for the 5G small cells based on different types (femtocells, picocells, and microcells), different frequency (sub-6 GHz vs mmWave), different scenarios (enterprises, urban, and rural & remote), and five global regions (East Asia, North America, Europe, South Asia, and others).

Our 5G small cells market forecast builds on the extensive analysis of primary and secondary data, combined with careful consideration of market drivers, constraints, and key player activities. Our model of the 5G small cell market considers how the following variables evolve during the forecast period: the development and adoption rate of sub-6 GHz and mmWave in the 5 regions, the growth of internet of things (IoT) for broadband and critical applications, 5G rollout potentials for enterprises, urban, and rural & remote purposes, and the utilization rate of different types of small cells for each scenario.

This report also includes comprehensive company profiles for key global players from infrastructure suppliers to telecommunication operators.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. 5G commercial/pre-commercial services (Jun 2021)
  • 1.2. 5G, next generation cellular communications network
  • 1.3. Two types of 5G: sub-6 GHz and mmWave
  • 1.4. 3 main types of 5G services
  • 1.5. Drivers for Ultra Dense Network (UDN) Deployment:
  • 1.6. Definition of Small Cells in 5G
  • 1.7. 5G Small Cell potential deployment scenarios
  • 1.8. Trends in 5G network: easier for carriers to deploy
  • 1.9. Small cell vendor landscape
  • 1.10. Development trend of the front end architecture of base stations
  • 1.11. Key semiconductor properties for RF (radio frequency) components in 5G base stations
  • 1.12. 5G brings in new use cases beyond mobile applications
  • 1.13. More market opportunities enabled by 5G
  • 1.14. 5G private network deployment on the rise
  • 1.15. Remaining challenges for 5G private network in Industry 4.0
  • 1.16. Cellular networks for indoor/semi-indoor enterprises
  • 1.17. Not every indoor/semi-indoor venues are wanting 5G
  • 1.18. 5G compared to Wi-Fi 6/ Wi-Fi 6E
  • 1.19. 5G & Wi-Fi 6/6E coexisting scenarios
  • 1.20. Wireless network options for IoT nowadays
  • 1.21. 5G small cell forecast (2021-2031) by frequency (cumulative installations)
  • 1.22. 5G small cell number forecast (2021-2031) by type
  • 1.23. 5G sub-6 GHz small cell number forecast (2021-2031) by region
  • 1.24. 5G mmWave small cell number forecast (2021-2031) by region

2. 5G - AN OVERVIEW

  • 2.1. 5G, next generation cellular communications network
  • 2.2. Two types of 5G: sub-6 GHz and mmWave
  • 2.3. 5G commercial/pre-commercial services (Jun 2021)
  • 2.4. Two types of 5G: sub-6 GHz and mmWave
  • 2.5. Global snapshot of allocated/targeted 5G spectrum
  • 2.6. 3 main types of 5G services
  • 2.7. From 1G to 5G: the evolution of cellular network infrastructure
  • 2.8. 5G Radio Access Network (RAN) Architecture
  • 2.9. Key technology breakthrough for 5G deployment : 1. Mobile Edge Computing (MEC)
  • 2.10. Key technology breakthrough for 5G deployment: 2. End-to-end Network Slicing
  • 2.11. Challenges in 5G
  • 2.12. Drivers for Ultra Dense Network (UDN) Deployment:

3. 5G SMALL CELLS INTRODUCTION

  • 3.1. Definition of Small Cells in 5G
  • 3.2. 5G Small Cell deployment scenarios
  • 3.3. 5G indoor digitalization solution: 1. Distributed indoor system - 1
  • 3.4. 5G indoor digitalization solution: 1. Distributed indoor system - 2
  • 3.5. 5G indoor digitalization solution: 2. All-in-One integrated small cells
  • 3.6. 5G outdoor microcells
  • 3.7. Trends in 5G network: easier for carriers to deploy
  • 3.8. 5G small cells key trends summary

4. 5G SMALL CELL SUPPLY CHAIN ANALYSIS

  • 4.1. 5G small cell vendors
    • 4.1.1. Small Cell Vendor Landscape
    • 4.1.2. Competition landscape for key 5G infrastructure vendors
    • 4.1.3. Commercialized 5G Small cells
  • 4.2. Beamforming Antenna
    • 4.2.1. Key metrics that predict the antenna performance
    • 4.2.2. Beamforming technology: analog & digital
    • 4.2.3. Hybrid beamforming for mmWave base stations
    • 4.2.4. Phased array antenna front-end density
    • 4.2.5. Trends in 5G antennas
    • 4.2.6. Printed microstrip antennas for 5G mmWave base stations
    • 4.2.7. 5G mmWave antenna teardown (1)
    • 4.2.8. 5G mmWave antenna teardown (2)
    • 4.2.9. 5G mmWave antenna teardown (3)
    • 4.2.10. Top infrastructure venders are vertically integrated with antenna capabilities
  • 4.3. 5G RF Components
    • 4.3.1. RF frontend components in 5G sub-6 GHz base stations
    • 4.3.2. Radio Frequency Front End (RFFE) Module
    • 4.3.3. RF frontend components in 5G mmWave base stations
    • 4.3.4. Key properties of semiconductors utilized in RF front end (RFFE)
    • 4.3.5. Key semiconductor properties
    • 4.3.6. Choice of semiconductor for amplifiers in different types of base stations
    • 4.3.7. Power vs frequency map of power amplifier technologies
    • 4.3.8. The choice of the semiconductor technology for power amplifiers
    • 4.3.9. Company profiles of RF amplifiers suppliers
    • 4.3.10. Ampleon
    • 4.3.11. Analog Devices
    • 4.3.12. Cree-Wolfspeed
    • 4.3.13. Wolfspeed GaN-on-SiC adoption
    • 4.3.14. Infineon
    • 4.3.15. MACOM
    • 4.3.16. Mitsubishi Electric
    • 4.3.17. Mitsubishi Electric
    • 4.3.18. Northrop Grumman
    • 4.3.19. NXP Semiconductor
    • 4.3.20. NXP Semiconductor
    • 4.3.21. Qorvo
    • 4.3.22. Qorvo sub-6 GHz products
    • 4.3.23. Qorvo mmWave products
    • 4.3.24. RFHIC
    • 4.3.25. Sumitomo Electric
    • 4.3.26. Filters
    • 4.3.27. Filters for Sub-6 GHZ small cells
    • 4.3.28. Filters for Sub-6 GHZ small cells: SAW & BAW
    • 4.3.29. Filters for Sub-6 GHZ small cells: SAW & BAW
    • 4.3.30. BAW Filters for Sub-6 GHZ small cells
    • 4.3.31. Filters for mmWave small cells
    • 4.3.32. Transmission lines filter (1): Substrate integrated waveguide filters (SIW)
    • 4.3.33. Transmission lines filter (2.1):Single-layer transmission-line filters on PCB
    • 4.3.34. Transmission lines filter (2.2):Single-layer transmission-line filters on ceramic
    • 4.3.35. Transmission lines filter (2.3):Other substrate options: thin or thick film and glass
    • 4.3.36. Transmission lines filter (3): Multilayer low temperature co-fired ceramic (LTCC) filters
    • 4.3.37. Multilayer LTCC: production challenge
    • 4.3.38. Examples of multilayer LTCC from key suppliers (1)
    • 4.3.39. Examples of multilayer LTCC from key suppliers (2)
    • 4.3.40. Benchmarking different transmission lines filters
    • 4.3.41. Filter technology summary
    • 4.3.42. Heterogeneous package integration for mmWave antenna in package (AiP)
    • 4.3.43. Low loss materials is key for 5G mmWave AiP
    • 4.3.44. Low loss materials for AiP: Five important metrics that impact the materials selection
    • 4.3.45. Overview of low-loss materials for AiP
    • 4.3.46. Choices of low-loss materials for 5G mmWave AiP
    • 4.3.47. Key low loss materials suppliers landscape
    • 4.3.48. Benchmark of commercialised low-loss organic laminates
    • 4.3.49. Benchmark of low loss materials for AiP
    • 4.3.50. Summary
    • 4.3.51. Electromagnetic interference (EMI) shielding for 5G
    • 4.3.52. What is electromagnetic interference shielding and why it matters to 5G
    • 4.3.53. Components that require EMI shielding
    • 4.3.54. Challenges and key trends for EMI shielding for 5G devices
    • 4.3.55. Package-level EMI shielding
    • 4.3.56. Conformal coating: increasingly popular
    • 4.3.57. Which suppliers and elements have used EMI shielding?
    • 4.3.58. Overview of conformal shielding process
    • 4.3.59. What is the incumbent process for PVD sputtering?
    • 4.3.60. Spray-on EMI shielding: process and merits
    • 4.3.61. Screen printed EMI shielding: process and merits
    • 4.3.62. Suppliers targeting ink-based conformal EMI shielding
    • 4.3.63. EMI shielding: inkjet printed particle-free Ag inks
    • 4.3.64. EMI shielding: inkjet printed particle-free Ag inks
    • 4.3.65. Has there been commercial adoption of ink-based solutions?
    • 4.3.66. Compartmentalization of complex packages is a key trend
    • 4.3.67. Value proposition for magnetic shielding using printed inks
    • 4.3.68. Thermal management for 5G small cells
    • 4.3.69. Components affected by temperature
    • 4.3.70. TIM example: Samsung 5G access point
    • 4.3.71. TIM example: Samsung outdoor CPE unit
    • 4.3.72. TIM example: Samsung indoor CPE unit
    • 4.3.73. Boyd's take on thermal design for an access point
    • 4.3.74. Cradlepoint's wideband adapter
    • 4.3.75. Huawei 5G CPE unit
    • 4.3.76. TIM Suppliers Targeting 5G Applications

5. 5G SMALL CELL VERTICALS BEYOND MOBILE

  • 5.1. 5G private networks for Industry 4.0
    • 5.1.1. Three reasons why 5G networks enable connected industries and automation
    • 5.1.2. Private networks are important for 5G new use cases
    • 5.1.3. Dedicated spectrum is the key to unlock the potential of private network
    • 5.1.4. Public, hybrid, and private networks for connected industries
    • 5.1.5. Concerns for public network for connected industries
    • 5.1.6. Stakeholders and incentives of private networks
    • 5.1.7. 5G private network deployment on the rise
  • 5.2. Case studies of 5G private networks for Industry 4.0
    • 5.2.1. Updating existing industrial networks with wireless 5G in factories
    • 5.2.2. 5G private network for Industry 4.0 case study: Bosch
    • 5.2.3. 5G private network for Industry 4.0 case study: Bosch factory in Stuttgart, Germany
    • 5.2.4. 5G private network for Industry 4.0 use cases demonstrated by Qualcomm - 1
    • 5.2.5. 5G private network for Industry 4.0 case study demonstrated by Qualcomm - 2
    • 5.2.6. 5G private network for Industry 4.0 case study: World's first mmWave smart factory in ASE group in Taiwan
    • 5.2.7. 5G private network for Industry 4.0 case study : World's first mmWave smart factory in ASE group in Taiwan
    • 5.2.8. 5G private network for Industry 4.0 case study : Siticom partners with Airspan Networks to supply 5G for various verticals in Germany
    • 5.2.9. 5G private network for Industry 4.0 case study : ADVA partners to supply 5G private networks for an optical terafactory in Germany
    • 5.2.10. 5G private network vs Wi-Fi for Industry 4.0
    • 5.2.11. 5G private network - non standalone (NSA) or standalone (SA) 5G?
    • 5.2.12. Remaining challenges of 5G private network for Industries 4.0
  • 5.3. Indoor/semi-indoor enterprises (excl. manufacturing industries)
    • 5.3.1. Cellular networks for indoor/semi-indoor enterprises
    • 5.3.2. Scenarios where cellular signals are difficult to access
    • 5.3.3. Two ways to deploy cellular networks in indoor/semi-indoor venues
    • 5.3.4. Pros and Cons of DAS and SCS
    • 5.3.5. Neutral host small cell to support multiple operators and bands
    • 5.3.6. 4G indoor case study - CommScope's DAS solution for metro network in Saudi Arabia
    • 5.3.7. 4G/5G indoor case study - CommScope's SCS solution for UK hospitals
    • 5.3.8. 5G indoor case study - Ericsson's SCS solution for enterprise office building
    • 5.3.9. 5G indoor case study - Airspan's SCS solution for smart campus in the UK
    • 5.3.10. 5G indoor case study - Huawei's SCS solution for national stadium in China
    • 5.3.11. Not every indoor/semi-indoor venues are wanting 5G
  • 5.4. Autonomous driving and C-V2X
    • 5.4.1. Vehicle-to-everything (V2X)
    • 5.4.2. Why Vehicle-to-everything (V2X) is important, especially for future autonomous vehicles - 1
    • 5.4.3. Why Vehicle-to-everything (V2X) is important, especially for future autonomous vehicles - 2
    • 5.4.4. Two type of V2X technology: Wi-Fi vs cellular
    • 5.4.5. Detailed Comparison of Wi-Fi and Cellular based V2X communications
    • 5.4.6. Regulatory: Wi-Fi based vs C-V2X
    • 5.4.7. C-V2X assist the development of smart mobility
    • 5.4.8. How C-V2X can support smart mobility
    • 5.4.9. Timeline for the deployment of C-V2X
    • 5.4.10. Architecture of C-V2X technology
    • 5.4.11. C-V2X includes two parts: via base station or direct communication
    • 5.4.12. C-V2X via base station: vehicle to network (V2N)
    • 5.4.13. Use cases and applications of C-V2X overview
    • 5.4.14. 5G technology enable direct communication for C-V2X
    • 5.4.15. C-V2X for automated driving use case
    • 5.4.16. Case study: 5G to provide comprehensive view for autonomous driving
    • 5.4.17. Case study: 5G to support HD content and driver assistance system
    • 5.4.18. Case study: Ford C-V2X from 2022
    • 5.4.19. Progress so far
    • 5.4.20. Landscape of supply chain
    • 5.4.21. 5G for autonomous vehicle: 5GAA
  • 5.5. 5G new use cases: What are other potential 5G use cases apart from those we already know?
    • 5.5.1. More opportunities enabled by 5G
    • 5.5.2. Validation and Certification of 5G solutions in a Digital twin environment

6. 5G SMALL CELL VS OTHER WIRELESS TECHNOLOGIES

  • 6.1. Wi-Fi
  • 6.2. Wi-Fi 6 - what are the key technology breakthroughs?
  • 6.3. 5G compared to Wi-Fi 6/ Wi-Fi 6E
  • 6.4. 5G & Wi-Fi 6/6E coexisting scenario
  • 6.5. 5G for IoT

7. 5G SMALL CELL MARKET FORECAST AND OUTLOOK

  • 7.1. Forecast methodology

8. COMPANY PROFILES