NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

固态和聚合物电池市场(2021-2031):技术、预测、参与者

Solid-State and Polymer Batteries 2021-2031: Technology, Forecasts, Players

出版商 IDTechEx Ltd. 商品编码 1015124
出版日期 内容资讯 英文 468 Pages
商品交期: 最快1-2个工作天内
价格
固态和聚合物电池市场(2021-2031):技术、预测、参与者 Solid-State and Polymer Batteries 2021-2031: Technology, Forecasts, Players
出版日期: 2021年06月23日内容资讯: 英文 468 Pages
简介

标题
固态和聚合物电池市场(2021-2031):技术、预测、参与者
电池业务的革命性方法和潜在的电动汽车游戏提升者。

"固态电池市场将重新洗牌供应链,到 2031 年将达到 80 亿美元以上。"

典型的商用电池通常由阴极、阳极、隔膜和电解质组成。迄今为止,我们拥有的最成功的商用电池之一是基于锂离子技术,该技术自 1991 年开始商业化。然而,它们在全球范围内的成功和在消费电子和电动汽车 (EV) 中的普及无法掩盖其在底层技术带来的安全性、性能和外形。

典型细胞图

最广泛使用的商业锂离子技术采用液体电解质,在有机溶剂中使用锂鹽,例如 LiPF6、LiBF4 或 LiClO4。然而,固体电解质界面(SEI)是负极电解质分解的结果,限制了有效电导。此外,液体电解质需要昂贵的膜来分隔阴极和阳极,以及不透水的外壳以避免泄漏。因此,这些电池的尺寸和设计自由度受到限制。此外,液体电解质具有安全和健康问题,因为它们使用易燃和腐蚀性液体。三星的 Firegate 和数十次电动汽车燃烧特别突出了使用易燃液体电解质时即使是大公司也会面临的风险。

固态电解质具有解决所有这些问题的潜力,尤其是在电动汽车、可穿戴设备和无人机市场。他们的第一个应用是在 70 年代作为心脏起搏器的原电池,其中一块锂金属与固体碘接触。这两种材料的行为就像一个短路电池,它们的反应导致在它们的界面形成碘化锂(LiI) 层。在 LiI 层形成后,一个非常小的恒定电流仍然可以从锂阳极流向碘阴极数年。快进到 2011 年,丰田和东京理工学院的研究人员声称发现了一种硫化物基材料,该材料具有与液体电解质相同的离子电导率,这在十年前是不可想像的。五年后,他们将这个价值翻了一番,从而使固态电解质对高功率应用和快速充电也很有吸引力。直到最近,我们才听说固态电池将在几年内部署在电动汽车中的多个计划。这些兴趣和发展推动了对新型材料和储能系统的研究和投资,这些材料和储能系统可以使当前的锂离子能量密度增加三倍。

在固态电池中,电极和电解质都是固态的。固态电解质通常也起到隔板的作用,由于去除了某些组件(例如隔板和外壳),因此可以缩小尺寸。因此,与传统的锂离子电池相比,它们有可能变得更薄、更靈活,并且每单位重量包含更多的能量。此外,去除液体电解质可以成为获得更安全、更持久的电池的途径,因为它们更能抵抗温度变化和使用过程中发生的物理损坏。固态电池可以在退化之前处理更多的充电/放电循环,从而保证更长的使用寿命。

由于电池市场目前由亚洲公司主导,欧洲和美国公司正在努力赢得这场军备竞赛,在他们看来,这可能会将附加值从日本、中国和韩国转移出去。不同的材料选择和制造程序的变化显示了电池供应链的重新洗牌。从技术和商业的角度来看,固态电池的发展已经成为下一代电池战略的一部分。它已成为具有地区利益和政府支持的全球游戏。

此外,随著电动汽车市场的快速增长和对更长续航里程的监管要求,具有更好性能(包括更好的安全性和更高的能量密度)的电池技术正在引起电池供应商、汽车原始设备制造商、材料供应商和投资者的关注。在地理上更接近应用市场、完整而安全的供应链、卓越的性能以及成本比较甚至降低的潜力 - 所有这些因素都促使数十家玩家投身固态电池业务。

全球主要的固态电池厂商

这份报告涵盖了固态电解质行业,在产能和市场规模方面给出了到 2031 年的 10 年预测,预计将超过 $8B。特别关注获奖化学品,对 8 种无机固体电解质和有机聚合物电解质进行了全面分析。

固态电解质技术方法(来源:IDTechEx)

此外,该报告还涵盖了与固体电解质相关的制造挑战以及大公司(丰田、东芝等)如何尝试解决这些限制,以及重要参与者的研究进展和活动。还介绍了锂金属作为战略资源的研究,重点介绍了这种材料在全球的战略分布及其在固态电池中的作用。一些化学品非常需要锂,会给全球的矿业公司带来压力。

最后,对 20 多家不同公司的技术和制造准备情况进行比较和排名,并附有觀察名单和得分比较。

< h4>本报告中讨论的参与者:

24M, Applied Materials, BatScap (Bollore Group)/Bathium, Beijing Easpring Material Technology, BMW, BrightVolt, BYD, CATL, Cenat, CEA Tech, China Aviation Lithium Battery, Coslight, Cymbet, EMP A, Enovate Motors, FDK, Fisker Inc., Flashcharge Batteries, Fraunhofer Batterien, Front Edge Technology, Ganfeng Lithium, 吉森大学, 广州大电力, 国轩高科动力能源, 日立造船, 现代, Ilika, IMEC, Infinite Power Solutio ns, 化学研究所中国科学院、离子材料、ITEN、嘉威龙动力固态存储技术如皋城有限公司、嘉威可再生能源、约翰逊电池技术、Kalptree能源、Magnis能源技术、三井金属、村田、国家电池、国家星际Solid State Lithium Electric Technology, NGK/NTK, 中国科学院宁波材料技术与工程研究所, Oak Ridge Energy Technologies, Ohara, Panasonic, Planar Energy, Polyplus, Prieto Batter y, ProLogium, Qin Tao E nergy Development Co., QuantumScape, Sakti 3, Samsung SDI, Schott AG, SEEO, Solidenergy, Solid Power, Solvay, Sony, STMicroelectronics, Taiyo Yuden, TDK, Tianqi Lithium, Toshiba, Toyota, ULVAC, University of MuVolkswagen , 万先 A123 系统, 威联新能源科技, 中天科技。

报告主要部分的细分:

  • 第 1 章 - 关于固态电池的最新讨论
  • 第 2 章 - 背景
  • 第R 章第 3 章 - 对所有固态电池的需求
  • 第 3 章 - 固态电池
  • 第 4 章 - 固态电池制造
  • 第 5 章 - 公司在固态电池方面的活动和概况

目录

1. 执行摘要和结论
  • 1.1. 玩家在本报告中畅谈
  • 1.2. 固态电池业务现状及未来
  • 1.3. 区域努力
  • 1.4. 影响欧洲市场的因素
  • 1.5。主要固态电池企业位置概览
  • 1.6. 固态电池合作伙伴关系
  • 1.7. 固态电解质技术方法
  • 1.8。固态电解质技术总结
  • 1.9. 固态电解质系统的比较
  • 1.10. 技术评估
  • 1.11. 技术评估(续)
  • 1.12。各公司技术汇总
  • 1.13. 汽车原始设备制造商的固态电池合作/投资
  • 1.14. 技术和制造准备
  • 1.15。分数比较
  • 1.16。固态电池价值链
  • 1.17. 量产时间表
  • 1.18. 量产要来了吗?
  • 1.19. 市场预测方法
  • 1.20。SSB市场预测的假设与分析
  • 1.21. 各种应用固态电池的价格预测
  • 1.22。固态电池可寻址市场规模
  • 1.23。2021-2031年固态电池应用预测
  • 1.24。2025年和2031年市场规模细分
  • 1.25。2021-2031年固态电池技术预测
  • 1.26。2021-2031年汽车插电固态电池预测

2. 锂金属阳极

  • 2.1. 高能量密度需要锂金属
  • 2.2. 为什么锂如此重要?
  • 2.3. 锂金属可能会有所作为
  • 2.4. 不同电解质比能量对比
  • 2.5. 锂金属挑战
  • 2.6. 锂金属箔
  • 2.7. 锂在哪里?
  • 2.8. 如何生产锂
  • 2.9. 氢氧化锂与碳酸锂
  • 2.10. 固态电池中的锂
  • 2.11. 资源注意事项
  • 2.12. "无阳极" 电池
  • 2.13. 无负极电池的挑战

3. 从细胞到包装

  • 3.1. 电池汽车公司之间的商业模式
  • 3.2. 包装参数比细胞更重要
  • 3.3. 包装设计的影响
  • 3.4. CATL的CTP设计
  • 3.5。比亚迪刀片电池:概述
  • 3.6. 比亚迪刀片电池:结构与组成
  • 3.7. 比亚迪的刀片电池:设计
  • 3.8. 比亚迪刀片电池:pack布局
  • 3.9. 比亚迪刀片电池:能量密度提升
  • 3.10. 比亚迪刀片电池:热安全
  • 3.11. 比亚迪刀片电池:结构安全
  • 3.12. 成本和性能
  • 3.13. 比亚迪刀片电池:CTP代表什么
  • 3.14. 概括

4. 快速充电

  • 4.1. 各阶段快速充电
  • 4.2. 电池特性对快速充电的重要性
  • 4.3. 固态电池快速充电

5. 复合电解质

  • 5.1. 两全其美的?
  • 5.2. 第二章介绍

6. 为什么电池开发如此缓慢?

    <我>6.1。什么是电池?
  • 6.2. 一大障碍——能量密度
  • 6.3. 电池技术基于氧化还原反应
  • 6.4. 电化学反应本质上是基于电子转移
  • 6.5。电化学非活性成分降低能量密度
  • 6.6. 电解液在电池中的重要性
  • 6.7. 阴极和阳极需要有结构顺序
  • 6.8. 金属锂负极故障案例

7. 锂离子电池的安全问题

  • 7.1. 液体电解质锂离子电池的安全性
  • 7.2. 现代恐怖电影在没电的手机电池中发现了恐惧
  • 7.3. 三星的防火墙
  • 7.4. 锂离子电池的安全方面
  • 7.5。LIB 电池温度和可能的结果

8. 锂离子电池

  • 8.1. 食物是人类的电力
  • 8.2. 什么是锂离子电池 (LIB)?
  • 8.3. 阳极替代品:锂钛和锂金属
  • 8.4. 阳极的替代品:其他碳马泰阿尔斯
  • 8.5。阳极替代品:矽、锡和合金材料
  • 8.6. 阴极替代品:LNMO、NMC、NCA 和五氧化二钒
  • 8.7. 阴极替代品:LFP
  • 8.8. 阴极替代品:硫
  • 8.9. 阴极替代品:氧代
  • 8.10. 高能阴极需要氟化电解质
  • 8.11. 如何改进 LIB?
  • 8.12。塑造现代锂离子电池的里程碑发现
  • 8.13. 锂离子研究中的推拉因素
  • 8.14. 该电池三元悖论
  • 8.15。构成因素

9. 结论

  • 9.1. 结论
  • 9.2. 介绍

10。为什么是固态电池

  • 10.1. 一个坚实的未来?
  • 10.2. 全球电池目标路线图
  • 10.3. 电池技术的演变
  • 10.4. 锂离子电池与固态电池
  • 10.5。什么是固态电池 (SSB)?
  • 10.6. 固态电池如何提高性能?
  • 10.7. 紧密堆叠
  • 10.8。恩ERGY密度提高
  • 10.9. 固态电池的价值主张和局限性
  • 10.10. 固态电池提供的靈活性和定制化

11。对固态电池的兴趣和活动

  • 11.1. 固态电池文献分析
  • 11.2. 在中国的利益
  • 11.3. 15 其他中国玩家在固态电池方面的活动
  • 11.4. 中国汽车玩家在固态电池上的活动
  • 11.5。地区利益:日本
  • 11.6. 根据德国 NPE 的技术路线图
  • 11.7. 电池技术路线图

12。固态电池简介

  • 12.1. 固态电池发展史
  • 12.2. 固态电池的历史
  • 12.3. 固态电池配置
  • 12.4. 固态电解质
  • 12.5。液体电解质和固体电解质的区别
  • 12.6. 如何设计一个好的固态电解质
  • 12.7. 固态电解质的分类
  • 12.8。薄膜与块状固态电池
  • 12.9。从事不同规模的公司
  • 12.10。薄陶瓷片的缩放
  • 12.11。对多功能固态电解质的要求
  • 12.12。固态电池有多安全?
  • 12.13. 固态电池的主要问题

13。固体聚合物电解质

  • 13.1. 聚合物基电池的应用
  • 13.2. 锂聚合物电池,聚合物电池,聚合物面糊IES
  • 13.3. 聚合物电解质的种类
  • 13.4. 电解聚合物选项
  • 13.5。聚合物电解质的优点和问题
  • 13.6. 固体聚合物电解质用PEO
  • 13.7. 从事聚合物固态电池的公司

14。固体无机电解质

  • 14.1. 锂离子固体无机电解质的种类
  • 14.2. 无机电解质的优点和问题
  • 14.3. 枝晶 - 需要陶瓷填料和高剪切模量 <我>14.4。无机电解质与聚合物电解质的比较
  • 14.5。氧化物无机电解质
  • 14.6. 氧化物电解质
  • 14.7. 石榴石
  • 14.8。基于 LLZO 的 SSB 的估计成本预测
  • 14.9. NASICON型
  • 14.10。钙钛矿
  • 14.11。锂电
  • 14.12。LiPON:建设
  • 14.13. 玩家工作和工作基于 LiPON 的电池
  • 14.14。基于 LiPON 的电池的阴极材料选择
  • 14.15。基于 LiPON 的电池的阳极
  • 14.16。基于 LiPON 的电池的基板选项
  • 14.17。不同企业薄膜电池材料及工艺趋势
  • 14.18. LiPON:容量增加
  • 14.19. 无机氧化物固态电解质比较
  • 14.20。含锂金属氧化物电解质的热稳定性
  • 14.21。从事氧化物固态电池的公司
  • 14.22。硫化物无机电解质
  • 14.23。LISICON型
  • 14.24。银铁矿
  • 14.25。从事硫化物固态电池的公司
  • 14.26。其他
  • 14.27。氢化锂
  • 14.28。卤化锂

15。超越电解质的固态电池材料

  • 15.1. 软包电池
  • 15.2. 铝层压板的制造技术
  • 15.3. 软包电池的包装程序
  • 15.4. 材料成本占很大一部分并且可能会波动
  • 15.5。阴极价格轨迹
  • 15.6。其他材料价格跟踪

16。超越锂离子电池的固态电解质

  • 16.1. 锂硫电池中的固态电解质
  • 16.2. 锂硫固体电极开发阶段
  • 16.3. 锂空气电池中的固态电解质
  • 16.4. 金属-空气电池中的固态电解质
  • 16.5。钠离子电池中的固态电解质
  • 16.6. 钠硫电池中的固态电解质

17。固态电池制造

  • 17.1. 真正的瓶颈
  • 17.2. 现有工艺:层压
  • 17.3. 固态电池组件制造工艺路线总结
  • 17.4. 氧化物电解液厚度和加工温度
  • 17.5。氧化锂薄膜的□□湿化学和真空沉积方法
  • 17.6. 当前的处理满足部门首长和挑战大规模制造的锂氧化物薄膜材料
  • 17.7。固体电解质制造工艺链
  • 17.8。阳极制造工艺链
  • 17.9。阴极制造工艺链
  • 17.10。细胞组装工艺链
  • 17.11。电池堆叠选项
  • 17.12。固体电池制造工艺
  • 17.13。固态电池制造设备
  • 17.14。Solid Power的ASSB制造
  • 17.15。锂金属聚合物电池的工业规模制造
  • 17.16。全固态电池(SMD型)的典型制造方法
  • 17.17。薄膜电解质可行吗?
  • 17.18. 薄膜电池主要制造工艺总结
  • 17.19. 薄膜电池的PVD工艺
  • 17.20。Ilika 的 PVD □□方法
  • 17.21。制造途径
  • 17.22。丰田的做法
  • 17.23。日立造船的做法
  • 17.24。Sakti3 的 PVD □□方法
  • 17.25。平面能量的方法
  • 17.26。固态电池应用
  • 17.27。固态电池的潜在应用
  • 17.28。市场准备
  • 17.29。用于消费电子产品的固态电池
  • 17.30。性能比较:CE 和可穿戴设备
  • 17.31 。用于电动汽车的固态电池
  • 17.32。用于电动汽车的电池
  • 17.33。ProLogium: "MAB" 电动汽车电池组组件
  • 17.34。24M
    • 17.34.1。半固体电解质电池的创新电极 <我>17.34.2。24M 重新定义制造工艺
  • 17.35。北汽集团
    • 17.35.1。北汽的原型
  • 17.36。宝马
    • 17.36.1。汽车制造商的努力 - 宝马
  • 17.37。博洛尔
    • 17.37.1。Bollor 的 LMF 电池
    • 17.37.2。汽车制造商的努力 - Bollore
  • 17.38。明伏特
    • 17.38.1。BrightVolt 电池
    • 17.38.2。BrightVolt 产品矩阵
    • 17.38.3。BrightVolt 电解液
  • 17.39。宁德时代
    • 17.39.1。宁德时代
    • 17.39.2。宁德时代能量密度发展路线图
  • 17.40。东航科技
    • 17.40.1。东航科技
  • 17.41。光宇
    • 17.41.1。光宇
  • 17.42。赛博
    • 17.42.1。适合集成的微型电池
  • 17.43。创新电机
    • 17.43.1。创新电机
  • 17.44。精益求精
    • 17.44.1。Excellatron制造的薄膜固态电池
  • 17.45。FDK
    • 17.45.1。FDK
    • 17.45.2。FDK固态电池的应用
  • 17.46。菲斯克
    • 17.46.1。汽车制造商的努力 - Fisker Inc.
  • 17.47。弗劳恩霍夫巴特里恩
    • 17.47.1。学术觀点 - Fraunhofer Batterien
  • 17.48。前沿技术
    • 17.48.1。超薄微电池-NanoEnergyR
  • 17.49。贛锋锂业
    • 17.49.1。贛锋Lithiu米
  • 17.50。吉森大学
    • 17.50.1。学术觀点 - 吉森大学
  • 17.51。日立造船
    • 17.51.1。日立造船的固态电解质
    • 17.51.2。日立造船的电池
  • 17.52。豪尊汽车
    • 17.52.1。Hozon汽车的原型
  • 17.53。魁北克水电
    • 17.53.1。魁北克水电 1
    • 17.53.2。魁北克水电 2
  • 17.54。现代
      < li>17.54.1。汽车制造商的努力 - 现代
  • 17.55。伊利卡
    • 17.55.1。伊莉卡简介
    • 17.55.2。伊利卡的商业模式
    • 17.55.3。Ilika 的微技术
    • 17.55.4。伊莉卡:Stereax
    • 17.55.5。伊莉卡:去利亚斯
  • 17.56。IMEC
    • 17.56.1。IMEC
  • 17.57。无限电源解决方案
    • 17.57.1□□。无限动力解决方案技术
    • 17.57.2。一个标准的棱柱形电池和IPS "蝙蝠的成本比较tery
  • 17.58。离子材料
    • 17.58.1。离子材料
    • 17.58.2。离子材料技术与制造工艺
  • 17.59。嘉威新能源
    • 17.59.1。嘉威新能源
  • 17.60。约翰逊电池技术公司
    • 17.60.1。约翰逊电池技术公司
    • 17.60.2。JBT的先进技术性能
  • 17.61。卡尔斯鲁厄理工学院
    • 17.61.1。卡尔斯鲁厄理工学院技术
  • 17.62。港南大学
    • 17.62.1。固态电解质 - 江南大学
  • 17.63。名古屋大学
    • 17.63.1。名古屋大学
  • 17.64。中国科学院宁波材料技术与工程研究所
    • 17.64.1。中国科学院宁波材料技术与工程研究所
  • 17.65。蔚来
    • 17.65.1。蔚来
  • 17.66。大原公司
    • 17.66.1。锂离子导电微晶玻璃粉-01
    • 17.66.2。LICGCTM PW-01 正极添加剂
    • 17.66.3。大原的固态电池产品
    • 17.66.4。大原/保利加
    • 17.66.5。LICGC在全固态电池中的应用
    • 17.66 .6。以LICGC为电解质的多层全固态锂离子电池的性能
    • 17.66.7。展会上的LICGC产品
    • 17.66.8。大原玻璃的制造过程
  • 17.67。松下
    • 17.67.1。电池供应商的努力 - 松下
  • 17.68。保利加
    • 17.68.1。保利加
  • 17.69。普列托电池
    • 17.69.1。普列托电池
  • 17.70。序言
    • 17.70.1。ProLogium 简介
    • 17.70.2。ProLogium 的技术
    • 17.70.3。技术突破
    • 17.70.4。产品类型
    • 17.70.5。ProLogium:固态锂陶瓷电池
    • 17.70.6。人与生物圈技术
  • 17.71。青岛能源发展
    • 17.71.1。青岛能源发展
    • 17.71.2。青岛能源发展史
  • 17.72。量子景觀
    • 17.72.1。QuantumScape 简介
    • 17.72.2。QuantumScape 技术介绍
    • 17.72.3。QuantumScape 专利摘要
    • 17.72.4。QuantumScape专利分析
    • 17.72.5。石榴石电解液/阴极电解液
    • 17.72.6。QuantumScape专利分析
    • 17.72.7。QuantumScape 细胞的测试分析
    • 17.72.8。QuantumScape 细胞的测试
    • 17.72.9。QuantumScape 技术的挑战
    • 17.72.10。SSB中石榴石电解质的特点
    • 17.72.11。QuantumScape 的技术 6
    • 17.72.12。QuantumScape 的制造时间表
  • 17.73。三星
    • 17.73.1。电池厂商的努力——三星SDI
    • 17.73.2。三星与 argyrodite 的合作
  • 17.74。肖特
    • 17.74.1。搜索引擎优化
  • 17.75。社会服务部
    • 17.75.1。介绍SE小号
    • 17.75.2。聚合物电池:SES
  • 17.76。坚实的力量
    • 17.76.1。固体电源简介
    • 17.76.2。Solid Power 的产品
    • 17.76.3。Solid Power 的技术路线图
    • 17.76.4。Solid Power 测试图
    • 17.76.5。Solid Power 的产品路线图
  • 17.77。索尔维
  • 17.78。意法半导体
    • 17.78.1。从限量到量产-意法半导体
    • 17.78.2。EnFilm□ 摘要 可充电薄膜电池
  • 17.79。太阳诱电
    • 17.79.1。太阳诱电
  • 17.80。TDK
    • 17.80.1。CeraCharge 的性能
    • 17.80.2。CeraCharge的主要应用
  • 17.81。Ensurge Micropower(原薄膜电子 ASA)
    • 17.81.1。公司介绍
    • 17.81.2。Ensurge的执行计划
    • 17.81.3。浪涌的技术
    • 17.81.4。商业模式和市场
    • 17.81.5。主要客户、合作伙伴和竞争对手
    • 17.81.6。公司财务
  • 17.82。东京工业大学
  • 17.83。东芝
    • 17.83.1。复合固态电解质
  • 17.84。丰田
    • 17.84.1。丰田的活动
    • 17.84.2。丰田的努力
    • 17.84.3。丰田的原型
    • 17.84.4。明斯特大学
    • 17.84.5。学术觀点 - 明斯特大学
  • 17.85。大众汽车
    • 17.85.1。汽车制造商的努力 - Volkswage n
    • 17.85.2。大众汽车对电动汽车电池的投资
  • 17.86。威狮新能源科技

18。附录

  • 18.1. 术语表 - 规格
  • 18.2. 性能COMPAR有用图表ISON
  • 18.3. 电池类别
  • 18.4. 商用电池封装技术
  • 18.5。商用电池封装技术比较
  • 18.6. 储能价值链上的参与者
  • 18.7. 原电池化学成分和常见应用
  • 18.8。流行的可充电电池化学物质的数值规格
  • 18.9。电池技术标杆
  • 18.10。1 千瓦时 (kWh) 是什么样的?
  • 18.11。技术和制造准备
  • 18.12。首字母缩略词列表
目录
Product Code: ISBN 9781913899547

Title:
Solid-State and Polymer Batteries 2021-2031: Technology, Forecasts, Players
Revolutionary approach for the battery business and potential EV game-raisers.

"Solid-state batteries market will reshuffle supply chain and reach over $8 billion by 2031."

A typical commercial battery cell usually consists of cathode, anode, separator and electrolyte. One of the most successful commercial batteries we have so far is based on lithium-ion technology, which has been commercialized since 1991. However, their worldwide success and diffusion in consumer electronics and electric vehicles (EV) cannot hide their limitations in terms of safety, performance, and form factor due to the underlying technology.

Illustration of a typical cell

Most widely used commercial lithium-ion technologies employ liquid electrolyte, with lithium salts such as LiPF6, LiBF4 or LiClO4 in an organic solvent. However, the solid electrolyte interface (SEI), which is a result of the de-composition of the electrolyte at the negative electrode, limits the effective conductance. Furthermore, liquid electrolyte needs expensive membranes to separate the cathode and anode, as well as an impermeable casing to avoid leakage. Therefore, the size and design freedom for these batteries are constrained. Furthermore, liquid electrolytes have safety and health issues as they use flammable and corrosive liquids. Samsung's Firegate and dozens of EV combustions have particularly highlighted the risks that even large companies incur when flammable liquid electrolytes are used.

Solid-state electrolytes have the potential to address all of those aspects, particularly in the electric vehicle, wearable, and drone markets. Their first application was in the 70s as primary batteries for pacemakers, where a sheet of Li metal is placed in contact with solid iodine. The two materials behave like a short-circuited cell and their reaction leads to the formation of a lithium iodide (LiI) layer at their interface. After the LiI layer has formed, a very small, constant current can still flow from the lithium anode to the iodine cathode for several years. Fast forward to 2011, and researchers from Toyota and the Tokyo Institute of Technology have claimed the discovery of a sulphide-based material that has the same ionic conductivity of a liquid electrolyte, something unthinkable up to a decade ago. Five years later, they were able to double that value, thus making solid-state electrolytes appealing also for high power applications and fast charging. Until recently, we have heard multiple plans that solid-state batteries will be deployed in EVs in a few years' time. These interests and developments have fuelled research and investments into new categories of materials and energy storage systems that can triple current Li-ion energy densities.

In solid-state batteries, both the electrodes and the electrolytes are solid state. Solid-state electrolyte normally behaves as the separator as well, allowing downscaling due to the elimination of certain components (e.g., separator and casing). Therefore, they can potentially be made thinner, flexible, and contain more energy per unit weight than conventional Li-ion. In addition, the removal of liquid electrolytes can be an avenue for safer, long-lasting batteries as they are more resistant to changes in temperature and physical damages occurred during usage. Solid state batteries can handle more charge/discharge cycles before degradation, promising a longer lifetime.

With a battery market currently dominated by Asian companies, European and US firms are striving to win this arms race that might, in their view, shift added value away from Japan, China, and South Korea. Different material selections and change of manufacturing procedures show an indication of reshuffle of the battery supply chain. From both technology and business point of view, development of solid-state battery has formed part of the next generation battery strategy. It has become a global game with regional interests and governmental supports.

In addition, with the rapid growth of the EV market and regulation requirement for longer range, battery technologies with better performance - including better safety and higher energy density - are drawing attention from battery vendors, automotive OEMs, material suppliers and investors. Geographically closer to the application market, complete and secure supply chain, superior performance, and potential for cost comparison or even reduction - all these factors drive dozens of players plunging into the solid-state battery business.

Major solid-state battery players globally

This report covers the solid-state electrolyte industry by giving a 10-year forecast till 2031 in terms of capacity production and market size, predicted to reach over $8B. A special focus is placed on winning chemistries, with a full analysis of the 8 inorganic solid electrolytes and of organic polymer electrolytes.

Solid-state electrolyte technology approach (source: IDTechEx)

Additionally, the report covers the manufacturing challenges related to solid electrolytes and how large companies (Toyota, Toshiba, etc.) try to address those limitations, as well as research progress and activities of important players. A study of lithium metal as a strategic resource is also presented, highlighting the strategic distribution of this material around the world and the role it will play in solid-state batteries. Some chemistries will be quite lithium-hungry and put a strain on mining companies worldwide.

Finally, over 20 different companies are compared and ranked in terms of their technology and manufacturing readiness, with a watch list and a score comparison.

Players discussed in this report:

24M, Applied Materials, BatScap (Bolloré Group) / Bathium, Beijing Easpring Material Technology, BMW, BrightVolt, BYD, CATL, Cenat, CEA Tech, China Aviation Lithium Battery, Coslight, Cymbet, EMPA, Enovate Motors, FDK, Fisker Inc., Flashcharge Batteries, Fraunhofer Batterien, Front Edge Technology, Ganfeng Lithium, Giessen University, Guangzhou Great Power, Guoxuan High-Tech Power Energy, Hitachi Zosen, Hyundai, Ilika, IMEC, Infinite Power Solutions, Institute of Chemistry Chinese Academy of Sciences, Ionic Materials, ITEN, Jiawei Long powers Solid-State Storage Technology RuGao City Co.,Ltd, JiaWei Renewable Energy, Johnson Battery Technologies, Kalptree Energy, Magnis Energy Technologies, Mitsui Metal, Murata, National Battery, National Interstellar Solid State Lithium Electricity Technology, NGK/NTK, Ningbo Institute of Materials Technology & Engineering, CAS, Oak Ridge Energy Technologies, Ohara, Panasonic, Planar Energy, Polyplus, Prieto Battery, ProLogium, Qing Tao Energy Development Co., QuantumScape, Sakti 3, Samsung SDI, Schott AG, SEEO, Solidenergy, Solid Power, Solvay, Sony, STMicroelectronics, Taiyo Yuden, TDK, Tianqi Lithium, Toshiba, Toyota, ULVAC, University of Münster, Volkswagen, Wanxian A123 Systems, WeLion New Energy Technology, Zhongtian Technology.

Breakdown of the main parts of the report:

  • CHAPTER 1 - LATEST DISCUSSIONS FOR SOLID-STATE BATTERIES
  • CHAPTER 2 - BACKGROUND
  • CHAPTER 3 - DESIRE FOR ALL SOLID-STATE BATTERIES
  • CHAPTER 3 - SOLID-STATE BATTERIES
  • CHAPTER 4 - SOLID-STATE BATTERY MANUFACTURING
  • CHAPTER 5 - COMPANY ACTIVITIES AND PROFILES ON SOLID-STATE BATTERIES

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Players talked in this report
  • 1.2. Status and future of solid state battery business
  • 1.3. Regional efforts
  • 1.4. Factors affecting the European market
  • 1.5. Location overview of major solid-state battery companies
  • 1.6. Solid-state battery partner relationships
  • 1.7. Solid-state electrolyte technology approach
  • 1.8. Summary of solid-state electrolyte technology
  • 1.9. Comparison of solid-state electrolyte systems
  • 1.10. Technology evaluation
  • 1.11. Technology evaluation (continued)
  • 1.12. Technology summary of various companies
  • 1.13. Solid state battery collaborations / investment by Automotive OEMs
  • 1.14. Technology and manufacturing readiness
  • 1.15. Score comparison
  • 1.16. Solid-state battery value chain
  • 1.17. Timeline for mass production
  • 1.18. Are mass production coming?
  • 1.19. Market forecast methodology
  • 1.20. Assumptions and analysis of market forecast of SSB
  • 1.21. Price forecast of solid state battery for various applications
  • 1.22. Solid-state battery addressable market size
  • 1.23. Solid-state battery forecast 2021-2031 by application
  • 1.24. Market size segmentation in 2025 and 2031
  • 1.25. Solid-state battery forecast 2021-2031 by technology
  • 1.26. Solid-state battery forecast 2021-2031 for car plug in

2. LITHIUM METAL ANODE

  • 2.1. Lithium metal is required for high energy density
  • 2.2. Why is lithium so important?
  • 2.3. Lithium metal may make a difference
  • 2.4. Specific energy comparison of different electrolytes
  • 2.5. Lithium metal challenge
  • 2.6. Lithium metal foils
  • 2.7. Where is lithium?
  • 2.8. How to produce lithium
  • 2.9. Lithium hydroxide vs. lithium carbonate
  • 2.10. Lithium in solid-state batteries
  • 2.11. Resources considerations
  • 2.12. "Anode-free" batteries
  • 2.13. Challenges of anode free batteries

3. FROM CELL TO PACK

  • 3.1. Business models between battery-auto companies
  • 3.2. Pack parameters mean more than cell's
  • 3.3. Influence of the pack design
  • 3.4. CATL's CTP design
  • 3.5. BYD's blade battery: overview
  • 3.6. BYD's blade battery: structure and composition
  • 3.7. BYD's blade battery: design
  • 3.8. BYD's blade battery: pack layout
  • 3.9. BYD's blade battery: energy density improvement
  • 3.10. BYD's blade battery: thermal safety
  • 3.11. BYD's blade battery: structural safety
  • 3.12. Cost and performance
  • 3.13. BYD's blade battery: what CTP indicates
  • 3.14. Summary

4. FAST CHARGING

  • 4.1. Fast charging at each stage
  • 4.2. The importance of battery feature for fast charging
  • 4.3. Fast charging for solid-state batteries

5. COMPOSITE ELECTROLYTES

  • 5.1. The best of both worlds?
  • 5.2. Chapter 2 introduction

6. WHY IS BATTERY DEVELOPMENT SO SLOW?

  • 6.1. What is a battery?
  • 6.2. A big obstacle - energy density
  • 6.3. Battery technology is based on redox reactions
  • 6.4. Electrochemical reaction is essentially based on electron transfer
  • 6.5. Electrochemical inactive components reduce energy density
  • 6.6. The importance of an electrolyte in a battery
  • 6.7. Cathode & anode need to have structural order
  • 6.8. Failure story about metallic lithium anode

7. SAFETY ISSUES WITH LITHIUM-ION BATTERIES

  • 7.1. Safety of liquid-electrolyte lithium-ion batteries
  • 7.2. Modern horror films are finding their scares in dead phone batteries
  • 7.3. Samsung's Firegate
  • 7.4. Safety aspects of Li-ion batteries
  • 7.5. LIB cell temperature and likely outcome

8. LI-ION BATTERIES

  • 8.1. Food is electricity for humans
  • 8.2. What is a Li-ion battery (LIB)?
  • 8.3. Anode alternatives: Lithium titanium and lithium metal
  • 8.4. Anode alternatives: Other carbon materials
  • 8.5. Anode alternatives: Silicon, tin and alloying materials
  • 8.6. Cathode alternatives: LNMO, NMC, NCA and Vanadium pentoxide
  • 8.7. Cathode alternatives: LFP
  • 8.8. Cathode alternatives: Sulphur
  • 8.9. Cathode alternatives: Oxygen
  • 8.10. High energy cathodes require fluorinated electrolytes
  • 8.11. How can LIBs be improved?
  • 8.12. Milestone discoveries that shaped the modern lithium-ion batteries
  • 8.13. Push and pull factors in Li-ion research
  • 8.14. The battery trilemma
  • 8.15. Form factor

9. CONCLUSIONS

  • 9.1. Conclusions
  • 9.2. Introduction

10. WHY SOLID-STATE BATTERIES

  • 10.1. A solid future?
  • 10.2. Worldwide battery target roadmap
  • 10.3. Evolution of battery technology
  • 10.4. Lithium-ion batteries vs. solid-state batteries
  • 10.5. What is a solid-state battery (SSB)?
  • 10.6. How can solid-state batteries increase performance?
  • 10.7. Close stacking
  • 10.8. Energy density improvement
  • 10.9. Value propositions and limitations of solid state battery
  • 10.10. Flexibility and customisation provided by solid-state batteries

11. INTERESTS AND ACTIVITIES ON SOLID-STATE BATTERIES

  • 11.1. Solid-state battery literature analysis
  • 11.2. Interests in China
  • 11.3. 15 Other Chinese player activities on solid state batteries
  • 11.4. Chinese car player activities on solid-state batteries
  • 11.5. Regional interests: Japan
  • 11.6. Technology roadmap according to Germany's NPE
  • 11.7. Roadmap for battery cell technology

12. INTRODUCTION TO SOLID-STATE BATTERIES

  • 12.1. History of solid-state battery development
  • 12.2. History of solid-state batteries
  • 12.3. Solid-state battery configurations
  • 12.4. Solid-state electrolytes
  • 12.5. Differences between liquid and solid electrolytes
  • 12.6. How to design a good solid-state electrolyte
  • 12.7. Classifications of solid-state electrolyte
  • 12.8. Thin film vs. bulk solid-state batteries
  • 12.9. Companies working on different sizes
  • 12.10. Scaling of thin ceramic sheets
  • 12.11. Requirements for solid-state electrolyte with multifunctions
  • 12.12. How safe are solid-state batteries?
  • 12.13. Major issues of solid-state batteries

13. SOLID POLYMER ELECTROLYTES

  • 13.1. Applications of polymer-based batteries
  • 13.2. LiPo batteries, polymer-based batteries, polymeric batteries
  • 13.3. Types of polymer electrolytes
  • 13.4. Electrolytic polymer options
  • 13.5. Advantages and issues of polymer electrolytes
  • 13.6. PEO for solid polymer electrolyte
  • 13.7. Companies working on polymer solid state batteries

14. SOLID INORGANIC ELECTROLYTES

  • 14.1. Types of solid inorganic electrolytes for Li-ion
  • 14.2. Advantages and issues with inorganic electrolytes
  • 14.3. Dendrites - ceramic fillers and high shear modulus are needed
  • 14.4. Comparison between inorganic and polymer electrolytes
  • 14.5. Oxide Inorganic Electrolyte
  • 14.6. Oxide electrolyte
  • 14.7. Garnet
  • 14.8. Estimated cost projection for LLZO-based SSB
  • 14.9. NASICON-type
  • 14.10. Perovskite
  • 14.11. LiPON
  • 14.12. LiPON: construction
  • 14.13. Players worked and working LiPON-based batteries
  • 14.14. Cathode material options for LiPON-based batteries
  • 14.15. Anodes for LiPON-based batteries
  • 14.16. Substrate options for LiPON-based batteries
  • 14.17. Trend of materials and processes of thin-film battery in different companies
  • 14.18. LiPON: capacity increase
  • 14.19. Comparison of inorganic oxide solid-state electrolyte
  • 14.20. Thermal stability of oxide electrolyte with lithium metal
  • 14.21. Companies working on oxide solid state batteries
  • 14.22. Sulphide Inorganic Electrolyte
  • 14.23. LISICON-type
  • 14.24. Argyrodite
  • 14.25. Companies working on sulphide solid state batteries
  • 14.26. Others
  • 14.27. Li-hydrides
  • 14.28. Li-halides

15. SOLID-STATE BATTERY MATERIALS BEYOND ELECTROLYTE

  • 15.1. Pouch cells
  • 15.2. Techniques to fabricate aluminium laminated sheets
  • 15.3. Packaging procedures for pouch cells
  • 15.4. Material costs take significant portion and can fluctuate
  • 15.5. Cathode price track
  • 15.6. Other material price track

16. SOLID-STATE ELECTROLYTES BEYOND LI-ION

  • 16.1. Solid-state electrolytes in lithium-sulphur batteries
  • 16.2. Lithium sulphur solid electrode development phases
  • 16.3. Solid-state electrolytes in lithium-air batteries
  • 16.4. Solid-state electrolytes in metal-air batteries
  • 16.5. Solid-state electrolytes in sodium-ion batteries
  • 16.6. Solid-state electrolytes in sodium-sulphur batteries

17. SOLID-STATE BATTERY MANUFACTURING

  • 17.1. The real bottleneck
  • 17.2. The incumbent process: lamination
  • 17.3. Summary of processing routes of solid-state battery components fabrication
  • 17.4. Oxide electrolyte thickness and processing temperatures
  • 17.5. Wet-chemical & vacuum-based deposition methods for Li-oxide thin films
  • 17.6. Current processing methods and challenges for mass manufacturing of Li-oxide thin-film materials
  • 17.7. Process chains for solid electrolyte fabrication
  • 17.8. Process chains for anode fabrication
  • 17.9. Process chains for cathode fabrication
  • 17.10. Process chains for cell assembly
  • 17.11. Cell stacking options
  • 17.12. Solid battery fabrication process
  • 17.13. Manufacturing equipment for solid-state batteries
  • 17.14. Solid Power's ASSB manufacturing
  • 17.15. Industrial-scale fabrication of Li metal polymer batteries
  • 17.16. Typical manufacturing method of the all solid-state battery (SMD type)
  • 17.17. Are thin film electrolytes viable?
  • 17.18. Summary of main fabrication technique for thin film batteries
  • 17.19. PVD processes for thin-film batteries
  • 17.20. Ilika's PVD approach
  • 17.21. Avenues for manufacturing
  • 17.22. Toyota's approach
  • 17.23. Hitachi Zosen's approach
  • 17.24. Sakti3's PVD approach
  • 17.25. Planar Energy's approach
  • 17.26. Solid-State Battery Applications
  • 17.27. Potential applications for solid-state batteries
  • 17.28. Market readiness
  • 17.29. Solid-state batteries for consumer electronics
  • 17.30. Performance comparison: CEs & wearables
  • 17.31. Solid-state batteries for electric vehicles
  • 17.32. Batteries used in electric vehicles
  • 17.33. ProLogium: "MAB" EV battery pack assembly
  • 17.34. 24M
    • 17.34.1. Innovative electrode for semi-solid electrolyte batteries
    • 17.34.2. Redefining manufacturing process by 24M
  • 17.35. BAIC Group
    • 17.35.1. BAIC's prototype
  • 17.36. BMW
    • 17.36.1. Automakers' efforts - BMW
  • 17.37. Bolloré
    • 17.37.1. Bolloré's LMF batteries
    • 17.37.2. Automakers' efforts - Bolloré
  • 17.38. BrightVolt
    • 17.38.1. BrightVolt batteries
    • 17.38.2. BrightVolt product matrix
    • 17.38.3. BrightVolt electrolyte
  • 17.39. CATL
    • 17.39.1. CATL
    • 17.39.2. CATL's energy density development roadmap
  • 17.40. CEA Tech
    • 17.40.1. CEA Tech
  • 17.41. Coslight
    • 17.41.1. Coslight
  • 17.42. Cymbet
    • 17.42.1. Micro-Batteries suitable for integration
  • 17.43. Enovate Motors
    • 17.43.1. Enovate Motors
  • 17.44. Excellatron
    • 17.44.1. Thin-film solid-state batteries made by Excellatron
  • 17.45. FDK
    • 17.45.1. FDK
    • 17.45.2. Applications of FDK's solid state battery
  • 17.46. Fisker
    • 17.46.1. Automakers' efforts - Fisker Inc.
  • 17.47. Fraunhofer Batterien
    • 17.47.1. Academic views - Fraunhofer Batterien
  • 17.48. Front Edge Technology
    • 17.48.1. Ultra-thin micro-battery-NanoEnergy®
  • 17.49. Ganfeng Lithium
    • 17.49.1. Ganfeng Lithium
  • 17.50. Giessen University
    • 17.50.1. Academic views - Giessen University
  • 17.51. Hitachi Zosen
    • 17.51.1. Hitachi Zosen's solid-state electrolyte
    • 17.51.2. Hitachi Zosen's batteries
  • 17.52. Hozon Automobile
    • 17.52.1. Hozon Automobile's prototype
  • 17.53. Hydro-Québec
    • 17.53.1. Hydro-Québec 1
    • 17.53.2. Hydro-Québec 2
  • 17.54. Hyundai
    • 17.54.1. Automakers' efforts - Hyundai
  • 17.55. Ilika
    • 17.55.1. Introduction to Ilika
    • 17.55.2. Ilika's business model
    • 17.55.3. Ilika's microtechnology
    • 17.55.4. Ilika: Stereax
    • 17.55.5. Ilika: Goliath
  • 17.56. IMEC
    • 17.56.1. IMEC
  • 17.57. Infinite Power Solutions
    • 17.57.1. Technology of Infinite Power Solutions
    • 17.57.2. Cost comparison between a standard prismatic battery and IPS' battery
  • 17.58. Ionic Materials
    • 17.58.1. Ionic Materials
    • 17.58.2. Technology and manufacturing process of Ionic Materials
  • 17.59. JiaWei Renewable Energy
    • 17.59.1. JiaWei Renewable Energy
  • 17.60. Johnson Battery Technologies
    • 17.60.1. Johnson Battery Technologies
    • 17.60.2. JBT's advanced technology performance
  • 17.61. Karlsruhe Institute of Technology
    • 17.61.1. Karlsruhe Institute of Technology
  • 17.62. Konan University
    • 17.62.1. Solid-state electrolytes - Konan University
  • 17.63. Nagoya University
    • 17.63.1. Nagoya University
  • 17.64. Ningbo Institute of Materials Technology & Engineering, CAS
    • 17.64.1. Ningbo Institute of Materials Technology & Engineering, CAS
  • 17.65. NIO
    • 17.65.1. NIO
  • 17.66. Ohara Corporation
    • 17.66.1. Lithium ion conducting glass-ceramic powder-01
    • 17.66.2. LICGCTM PW-01 for cathode additives
    • 17.66.3. Ohara's products for solid state batteries
    • 17.66.4. Ohara / PolyPlus
    • 17.66.5. Application of LICGC for all solid state batteries
    • 17.66.6. Properties of multilayer all solid-state lithium ion battery using LICGC as electrolyte
    • 17.66.7. LICGC products at the show
    • 17.66.8. Manufacturing process of Ohara glass
  • 17.67. Panasonic
    • 17.67.1. Battery vendors' efforts - Panasonic
  • 17.68. Polyplus
    • 17.68.1. Polyplus
  • 17.69. Prieto Battery
    • 17.69.1. Prieto Battery
  • 17.70. ProLogium
    • 17.70.1. Introduction to ProLogium
    • 17.70.2. ProLogium's technology
    • 17.70.3. Technology breakthrough
    • 17.70.4. Product types
    • 17.70.5. ProLogium: Solid-state lithium ceramic battery
    • 17.70.6. MAB technology
  • 17.71. Qingtao Energy Development
    • 17.71.1. Qingtao Energy Development
    • 17.71.2. History of Qingtao Energy Development
  • 17.72. QuantumScape
    • 17.72.1. Introduction to QuantumScape
    • 17.72.2. Introduction to QuantumScape's technology
    • 17.72.3. QuantumScape patent summary
    • 17.72.4. QuantumScape patent analysis
    • 17.72.5. Garnet electrolyte/catholyte
    • 17.72.6. QuantumScape patent analysis
    • 17.72.7. Test analysis of QuantumScape's cells
    • 17.72.8. Tests of QuantumScape's cells
    • 17.72.9. Challenges of QuantumScape's technology
    • 17.72.10. Features of garnet electrolyte in SSBs
    • 17.72.11. QuantumScape's technology 6
    • 17.72.12. QuantumScape's manufacturing timeline
  • 17.73. Samsung
    • 17.73.1. Battery vendors' efforts - Samsung SDI
    • 17.73.2. Samsung's work with argyrodite
  • 17.74. Schott
    • 17.74.1. SEEO
  • 17.75. SES
    • 17.75.1. Introduction to SES
    • 17.75.2. Polymer-based battery: SES
  • 17.76. Solid Power
    • 17.76.1. Introduction to Solid Power
    • 17.76.2. Solid Power's offering
    • 17.76.3. Solid Power's technology roadmap
    • 17.76.4. Solid Power test graphs
    • 17.76.5. Solid Power's product roadmap
  • 17.77. Solvay
  • 17.78. STMicroelectronics
    • 17.78.1. From limited to mass production-STMicroelectronics
    • 17.78.2. Summary of the EnFilm™ rechargeable thin-film battery
  • 17.79. Taiyo Yuden
    • 17.79.1. Taiyo Yuden
  • 17.80. TDK
    • 17.80.1. CeraCharge's performance
    • 17.80.2. Main applications of CeraCharge
  • 17.81. Ensurge Micropower (Former Thin Film Electronics ASA )
    • 17.81.1. Introduction to the company
    • 17.81.2. Ensurge's execution plan
    • 17.81.3. Ensurge's technology
    • 17.81.4. Business model and market
    • 17.81.5. Key Customers, partners and competitors
    • 17.81.6. Company financials
  • 17.82. Tokyo Institute of Technology
  • 17.83. Toshiba
    • 17.83.1. Composite solid-state electrolyte
  • 17.84. Toyota
    • 17.84.1. Toyota's activities
    • 17.84.2. Toyota' efforts
    • 17.84.3. Toyota's prototype
    • 17.84.4. University of Münster
    • 17.84.5. Academic views - University of Münster
  • 17.85. Volkswagen
    • 17.85.1. Automakers' efforts - Volkswagen
    • 17.85.2. Volkswagen's investment in electric vehicle batteries
  • 17.86. WeLion New Energy Technology

18. APPENDIX

  • 18.1. Glossary of terms - specifications
  • 18.2. Useful charts for performance comparison
  • 18.3. Battery categories
  • 18.4. Commercial battery packaging technologies
  • 18.5. Comparison of commercial battery packaging technologies
  • 18.6. Actors along the value chain for energy storage
  • 18.7. Primary battery chemistries and common applications
  • 18.8. Numerical specifications of popular rechargeable battery chemistries
  • 18.9. Battery technology benchmark
  • 18.10. What does 1 kilowatthour (kWh) look like?
  • 18.11. Technology and manufacturing readiness
  • 18.12. List of acronyms