NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

电动汽车的热管理 2021-2031年

Thermal Management for Electric Vehicles 2021-2031

出版商 IDTechEx Ltd. 商品编码 1015122
出版日期 内容资讯 英文 369 Slides
商品交期: 最快1-2个工作天内
价格
电动汽车的热管理 2021-2031年 Thermal Management for Electric Vehicles 2021-2031
出版日期: 2021年06月23日内容资讯: 英文 369 Slides
简介

标题
2021-2031 年电动汽车的热管理
锂离子电池、牵引电机和电力电子设备的热管理。材料、技术、OEM 策略、参与者分析和市场预测。

"到 2031 年将达到 2 TWh 的液冷电动汽车电池。"

电动汽车 (EV) 市场增长迅速,甚至证明对 COVID-19 相关的停工具有弹性,2020 年全年都在逐年增长。在 EV 市场中,我们看到电池容量、续航里程、充电率、宽带隙半导体和高性能牵引电机。此外,电动汽车火灾和相关召回使热失控检测、预防和保护的概念脱颖而出。所有这些趋势都需要更有效的热管理系统、解决方案和材料。

IDTechEx 关于电动汽车热管理的最新报告详细介绍了围绕锂离子电池、牵引电机和电力电子设备热管理的 OEM 战略、趋势和新兴替代方案。这些信息是从主要和次要来源收集的,并结合 2015 年至 2020 年间销售的 250 多种电动汽车模型的广泛模型数据库,提供了对该主题的全面概述。当前使用的技术和策略被描述、分析和预测。还讨论并讨论了浸入式冷却等新兴替代方案在未来应用中的适用性以及采用率预测。所有预测都提供到 2031 年,包括电动汽车电池需求、电池热管理策略、热界面材料、电动机需求和 Si IGBT 或 SiC MOSFET 逆变器等数量。

电动汽车电池的热管理策略发展迅速,并将继续如此。资料来源:2021-2031 年电动汽车热管理

快速充电是电动汽车市场的主要趋势。如果车辆可以在 30 分钟内充电,里程焦虑就不再是一个问题。几款具有这种能力的车辆已进入市场。保时捷 Taycan/奥迪 e-tron GT 平台以及新的现代 EG MP 架构等800 V 系统也出现了更多示例。这些更高的电压还有助于实现更快的充电。然而,热管理是快速充电的关键考虑因素,在此过程中保持电池冷却有助于延长电池的寿命,同时也是防止热失控的主要安全功能。出于这个原因,我们也看到了人们对浸入式冷却等更多新技术的兴趣。

浸入式冷却在电动汽车市场上具有潜力,从而创造了对介电流体的新需求。资料来源:2021-2031 年电动汽车的热管理

在 2020 年,电动汽车火灾受到高度重视,现代和通用等制造商不得不各自召回近 100,000辆汽车。这些召回的成本估计为现代汽车 9 亿美元和通用汽车 12 亿美元,更不用说对其电动汽车和电动汽车的整体声誉造成的损害。虽然人们普遍认为电动汽车起火比燃烧离子汽车起火少见,但电动汽车起火往往更为严重,而且由于数量未知,因此受到媒体的更多关注。热失控的检测和预防极为重要,尤其是在有关电动汽车安全的法规开始实施的情况下。这也为阻燃或防火绝缘材料提供了防止或限制电池组外部火灾进展的机会。鉴于对 EV 电池单元或电池组的设计没有达成共识,这使得 EV 市场成为热管理和防火部件和材料制造商的一个有趣的潜在市场。

与电池非常相似,有多种用于冷却电动机的设计。大多数市场都在使用基于永磁体的牵引电机,其磁铁在高温下有变性或变脆的风险。即使对于没有永磁体的电机,定子绕组在较高温度下的电阻也会增加,从而导致性能和寿命下降,并有可能损坏周围的组件。随著制造商努力提高效率和功率密度,出现了许多发展和创新设计,例如奥迪 e-tron 的内部转子水-乙二醇冷却系统。IDTechEx 报告涵盖了具有 EV 用例的电动机热管理、新兴技术以及对 EV 牵引电动机需求的预测。

电力电子设备经常被忽视,但在正常运行条件下,主逆变器通常是电动汽车中最热的组件。大多数市场都在使用 Si IGBT,这些 IGBT 肯定会产生大量热量,并且需要有效的热管理,通常将其集成到电机冷却系统中。近年来,我们已经看到在主牵引逆变器中大量采用 SiC MOSFET。这导致更高的开关频率并因此导致更高的效率。SiC 的使用还减少了封装的占用空间,从而导致更高的功率密度,进而对散热提出了更大的挑战。除了这些组件的液体冷却之外,我们还看到了逆变器封装本身内的引线键合、芯片连接和基板技术的趋势。每个 OEM 都有自己的电力电子战略和他们的热界面材料等选项的实施。IDTechEx 的最新报告包括电力电子设计趋势以及多个 EV 用例,并预测了 Si IGBT 和 SiC MOSFET 单元的需求。

关键主题:

  • 锂离子电池冷却:空气、液体、制冷剂和浸入式
  • 热界面材料
  • 散热器和冷却板
  • 热失控的重要性、检测和预防
  • 消防安全:法规和搜索解决方案NS
  • 电机热管理
  • 电力电子热管理

来自 IDTechEx 的分析师访问

所有报告购买都包括与专家分析师的长达 30 分钟的电话时间,他将帮助您将报告中的关键发现与您正在解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要

  • 1.1. 热管理简介
  • 1.2. 多个组件的最佳温度
  • 1.3. 外部环境温度和气候控制的影响
  • 1.4. BEV 热泵预测
  • 1.5。电池冷却方式分析
  • 1.6. OEM 冷却方法的未来全球趋势
  • 1.7. 采用冷却方法预测
  • 1.8。浸没流体:基准测试
  • 1.9. 浸没流体体积预测
  • 1.10. 液体冷却的主要趋势总结
  • 1.11. 电动汽车电池组的 TIM:按汽车细分市场预测
  • 1.12。2020 年电池起火及相关召回
  • 1.13. 法规变更
  • 1.14. 阻燃电池材料基准
  • 1.15。防火材料预测
  • 1.16。电动机:永磁与替代品
  • 1.17. 电机单位预测
  • 1.18. 电机冷却技术:OEM 策略
  • 1.19. 电动汽车中的电力电子
  • 1.20。矽、碳化矽和氮化镓的基准测试
  • 1.21. 向碳化矽过渡
  • 1.22。电力电子逆变器预测
  • 1.23。传统功率模块封装

2. 简介

  • 2.1. 热管理简介
  • 2.2. 行业术语
  • 2.3. 多个组件的最佳温度

3. 温度和热管理对范围的影响

  • 3.1. 范围计算
  • 3.2. 环境温度和气候控制的影响
  • 3.3. 与环境温度的模型比较
  • 3 .4。与气候控制的模型比较
  • 3.5。概括

4. 机舱供暖的创新

  • 4.1. 整体车辆热管理
  • 4.2. 技术时间表
  • 4.3. PTC 与热泵
  • 4.4. 带热泵的最新电动汽车
  • 4.5。BEV 热泵预测
  • 4.6. 进一步创新
  • 4.7. 精密热管理的优势
  • 4.8. 热管理高级控制:关键参与者和技术

5. 电动汽车锂离子电池的热管理

  • 5.1. 当前技术和 OEM 策略
    • 5.1.1. 电动汽车电池热管理简介
    • 5.1.2. 电池组内部和周围的材料机会
    • 5.1.3. 主动与被动冷却
    • 5.1.4. 被动电池冷却方法
    • 5.1.5。主动电池冷却方法
    • 5.1.6。风冷
    • 5.1.7。液体冷却
    • 5.1.8。液体冷却:设计选项
    • 5.1.9。液体冷却:另类流感IDS
    • 5.1.10。液体冷却:大型 OEM 公告
    • 5.1.11。制冷剂冷却
    • 5.1.12。现代的冷媒冷却时间表
    • 5.1.13。冷却液:比较
    • 5.1.14。冷却策略 热性能
    • 5.1.1 5. 电池冷却方式分析
    • 5.1.16。液体冷却的主要动机
    • 5.1.17。IONITY:欧洲快速充电网络
    • 5.1.18。改变 OEM 策略 - 液体冷却
    • 5.1.19。OEM 冷却方法的未来全球趋势
    • 5.1.20。按地区划分的 OEM 冷却方法
    • 5.1.21。采用冷却方法预测
    • 5.1.22。IDTechEx展望
  • 5.2. 电动汽车中锂离子电池的浸入式冷却
    • 5.2.1. 浸入式冷却:简介
    • 5.2.2. 单相与两相冷却
    • 5.2.3. 浸入式冷却液要求
    • 5.2.4. 玩家:电动汽车浸没液 (1)
    • 5.2.5。玩家:电动汽车浸没液 ( 2)
    • 5.2.6. 玩家:电动汽车浸没液 (3)
    • 5.2.7。浸没流体:密度和热导率
    • 5.2.8。浸渍液:工作温度
    • 5.2.9。浸没流体:粘度
    • 5.2.10。浸入式离子流体:成本
    • 5.2.11。浸没流体:总结
    • 5.2.12。参与者:XING Mobility、3M 和嘉实多
    • 5.2.13。球员:里马克和索尔维
    • 5.2.14。参与者:M&I 材料和法拉第未来
    • 5.2.15。参与者:Exoes、e- Mersiv 和 FUCHS Lubricants
    • 5.2.16。球员:克雷塞尔和壳牌
    • 5.2.17。迈凯轮 Speedtail 和 Artura
    • 5.2.18。梅赛德斯-AMG
    • 5.2.19。SWOT 分析 - 电动汽车的浸入式冷却
    • 5.2.20。沉浸式市场采用预测
    • 5.2.21。浸没流体体积预测
  • 5.3. 相变材料 (PCM)
    • 5.3.1. 用于电动汽车的相变材料 (PCM)
    • 5.3.2. PCM 类别和优缺点
    • 5.3.3. 典型材料
    • 5 .3.4. 相变材料 - 概述
    • 5.3.5。相变材料 - 概述 (2)
    • 5.3.6. 商用 PCM 的工作温度范围
    • 5.3.7。PCM:电动汽车中的玩家
    • 5.3.8。作为热能储存的相变材料
    • 5.3.9。PCM 与电池案例研究
    • 5.3.10。球员:苏南普
  • 5.4. 散热器和冷却板
    • 5.4.1. 散热器或散布的冷却板
    • 5.4.2. 雪佛兰 Volt 和 Dana
    • 5.4.3. 高级冷却板
    • 5.4.4. 高级冷却板:滚焊铝
    • 5.4.5。石墨散热器
  • 5.5。其他有趣的发展
    • 5.5.1. 主动式电池间冷却解决方案:圆柱形
    • 5.5.2. 镨inted温度传感器和加热器
    • 5.5.3. 标签冷却是解决方案吗?
    • 5.5.4。热电冷却
    • 5.5.5。皮肤冷却:Aptera Solar EV
  • 5.6. EV 电池的热管理:OEM 用例
    • 5.6.1. 奥迪e-tron
    • 5.6.2. 奥迪e-tron GT
    • 5.6.3. 宝马i3
    • 5.6.4。比亚迪刀片
    • 5.6.5。雪佛兰螺栓
    • 5.6.6。法拉第未来 FF 91
    • 5.6.7。现代科纳
    • 5.6.8。现代 E-GMP
    • 5.6.9。捷豹 I-PACE
    • 5.6.10。名爵ZS电动车
    • 5.6.11。里维安
    • 5.6.12。Romeo 电源热管理
    • 5.6.13。特斯拉 Model S P85D
    • 5.6.14。特斯拉 Model 3/Y
    • 5.6.15。特斯拉取消电池模块
    • 5.6.16。丰田普锐斯PHEV
    • 5.6.17。丰田RAV4 PHEV
    • 5.6.18。伏打盒
    • 5.6.19。施乐
  • 5.7. EV 电池组的 TIM
    • 5.7.1. 电动汽车热管理简介
    • 5.7.2. TIM - 包装和模块概述
    • 5.7.3. TIM 应用程序 - 包和模块
    • 5.7.4. TIM 应用程序 - 单元格格式
    • 5.7.5。陶氏电池组材料
    • 5.7.6。汉高电池组材料
    • 5.7.7。杜邦电池组材料
    • 5.7.8。电动汽车中 TIM 的关键特性
    • 5.7.9。电动汽车电池中的间隙垫
    • 5.7.10。从 Pads 切换到 Gap Fillers
    • 5.7.11。点胶 TIM 介绍
    • 5.7.12。点胶 TIM 的挑战
    • 5.7.13。材料选择和市场比较
    • 5.7.14。汽车行业的有机矽困境
    • 5.7.15。有机矽替代品
    • 5.7.16。主要参与者和考虑因素
    • 5.7.17。主要参与者及近期公告 (1)
    • 5.7.18。主要参与者及近期公告 (2)
    • 5.7.19。电动汽车用例:奥迪 e-tron
    • 5.7.20。EV 用例:雪佛兰 Bolt
    • 5.7.21。电动汽车用例:菲亚特 500e
    • 5.7.22。EV 用例:MG ZS EV
    • 5.7.23。电动汽车用例:日产聆风
    • 5.7.24。电动汽车用例:Smart Fortwo(梅赛德斯)
    • 5.7.25。电动汽车用例:特斯拉 Model 3/Y
    • 5.7.26。电动汽车用例:特斯拉、雪佛兰、现代
    • 5.7.27。特斯拉取消电池模块
    • 5.7.28。EV 用例摘要
    • 5.7.29。EV 电池 TIM 的商业基准
    • 5.7.30。电池和 TIM 需求趋势
    • 5.7.31。电动汽车电池组的 TIM:按汽车细分市场预测
    • 5.7.32。电动汽车电池组的 TIM:按 TIM 类型预测
    • 5.7.33。TIM 的其他应用
  • 5.8。热失控的重要性、检测和预防
    • 5.8.1. 电动汽车中的热失控和火灾
    • 5.8.2. 2020 年电池起火及相关召回
    • 5.8.3. 韩国电池起火
    • 5.8.4。电池起火的原因
    • 5.8.5。与 ICE 相比,EV 起火
    • 5.8.6。CAUS上课故障
    • 5.8.7。钉子渗透测试
    • 5.8.8。热失控阶段
    • 5.8.9。细胞化学和稳定性
    • 5.8.10。热失控传播
    • 5.8.11。多方面的安全考虑
    • 5.8.12。防止电池短路:Soteria
    • 5.8.13。法规变更
    • 5.8.14。什么级别的预防?
    • 5.8.15。检测电池组中的热失控
    • 5.8.16。气体发生/检测
    • 5.8.17。传感器的机会
    • 5.8.18。用于热失控检测的商业气体传感
  • 5.9. 防火材料
    • 5.9.1。模块和包装隔热材料
    • 5.9.2. 包装级别预防材料
    • 5.9.3. 新兴的消防安全解决方案
    • 5.9.4。电动汽车电池组中的气凝胶
    • 5.9.5。Aspen Aerogels 美国 OEM 合同
    • 5.9.6。防火涂料
    • 5.9.7。防止热失控:圆柱形电池到电池
    • 5.9.8。3M - 绝缘材料
    • 5.9.9。ADA Technologies - 防止热失控传播材料
    • 5.9.10。陶氏有机矽解决方案
    • 5.9.11。杜邦
    • 5.9.12。ITW Formex
    • 5.9.13。科思创聚碳酸酯
    • 5.9.14。埃肯有机矽解决方案 <李>5.9.15。HeetShield - 超薄绝缘材料
    • 5.9.16。HB富勒
    • 5.9.17。阻燃电池材料基准
    • 5.9.18。阻燃电池材料展望
    • 5.9.19。防火材料预测
  • 5.10。电池盒
    • 5.10.1。轻量化电池外壳
    • 5.10.2. 复合电池外壳
    • 5.10.3. 酚醛树脂的替代品
    • 5.10.4。大规模复合材料部件以推动可持续运输- TRB 轻型结构
    • 5.10.5。聚合物是否适合外壳?
    • 5.10.6。走向复合外壳?
    • 5.10.7。Continental 结构塑料 - 蜂窝技术

6. 电动汽车充电站的热管理

  • 6.1. 电动汽车充电机制基础
  • 6.2. 导电充电类型
  • 6.3. 电动汽车充电需要多长时间?
  • 6.4. 直流快充的趋势
  • 6.5。快速充电增益 - 汽车需要 300 kW?
  • 6.6. 快速充电的散热注意事项
  • 6.7. 液冷充电站
  • 6.8. Tritium - 直流充电解决方案提供商
  • 6.9. 电纜冷却实现大功率充电
  • 6.10. 特斯拉为其增压器采用液冷电纜
  • 6.11. Tesla:用于超快速充电的液冷连接器
  • 6.12. ITT Cannon 液冷充电
  • 6.13. 布鲁格 eConnect 液冷电纜
  • 6.14. 浸入式冷却充电站

7. 电动机的热管理

  • 7.1. 电机冷却策略
    • 7.1.1. 电动牵引电机:类型
    • 7.1.2. 电动机:永磁与替代品
    • 7.1.3. 电机单位预测
    • 7.1.4. 冷却电动机
    • 7.1.5。当前的 OEM 策略:空气冷却
    • 7.1.6。当前 OEM 策略:油冷
    • 7.1.7。里卡多的新马达
    • 7.1.8。当前 OEM 策略:水-乙二醇冷却
    • 7. 1.9. 电动机热管理概述
    • 7.1.10。冷却技术:OEM 策略
    • 7.1.11。电机冷却技术展望
    • 7.1.12。液体冷却的最新进展
    • 7.1.13。新兴技术:沉Cooli纳克
    • 7.1.14。新兴技术:制冷剂冷却
    • 7.1.15。新兴技术:相变材料
    • 7.1.16。灌封和封装
    • 7.1.17。灌封和封装:播放器
  • 7.2. 新兴汽车Developm的ENT
    • 7.2.1. 径向磁通与轴向磁通电机
    • 7.2.2. 轴向磁通电机:有趣的玩家
    • 7.2.3. 轴向磁通电机播放器列表
    • 7.2.4. 轮内电机
    • 7.2.5. DHX 超高扭矩电机
    • 7.2.6. 恶趣ipmake:辐条几何用于永磁电机
    • 7.2.7. Diabatix:冷却组件的快速设计
    • 7.2.8。集成定子外壳
    • 7.2.9. 与车辆热管理集成
  • 7.3. EV 电机的热管理:OEM用例
    • 7.3.1. 奥迪e-tron
    • 7.3.2. 宝马i3
    • 7.3.3. 雪佛兰螺栓
    • 7.3.4. 现代 E-GMP
    • 7.3.5. 捷豹 I-PACE
    • 7.3.6。日产聆风
    • 7.3.7。特斯拉 Model S
    • 7.3.8。特斯拉模型 3
    • 7.3.9。对yota 普锐斯

8. 电动汽车动力电子中的热管理

  • 8.1. 介绍
    • 8.1.1. 什么是电力电子?
    • 8.1.2. 电动汽车中的电力电子
    • 8.1.3. 电力电子器件系列
    • 8.1.4. 电源开关(晶体管)
    • 8.1.5。电源开关历史
    • 8.1.6。宽带隙半导体
    • 8.1.7。矽、碳化矽和氮化镓的基准测试
    • 8.1.8。碳化矽和氮化镓的应用
    • 8.1.9。逆变电源模块
    • 8.1.10。逆变器封装设计
    • 8.1.11。世代电源模块封装
    • 8.1.12。传统功率模块封装
    • 8.1.13。逆变器基准测试
    • 8.1.14。模组封装材料尺寸
    • 8.1.15。电力电子冷却
    • 8.1.16。双面冷却
    • 8.1.17。底板、散热器、封装材料
    • 8.1.18。汽车功率模块领导者
    • 8.1.19。电源模块供应链与创新
    • 8.1.20。向碳化矽过渡
    • 8.1.21。电力电子逆变器预测
  • 8.2. 超越引线键合
    • 8.2.1. 引线键合
    • 8.2.2. 铝銲线:一个常见的故障点
    • 8.2.3. 先进的引线键合技术
    • 8.2.4. 特斯拉的新型粘合技术
    • 8.2.5. 直接引线键合(三菱)
    • 8.2.6. 超越铝引线键合的技术演进
  • 8.3. 超越焊料
    • 8.3. 1. 芯片和基板附著是常见的故障模式
    • 8.3.2. 焊接技术的选择
    • 8.3.3. 技术演进:银烧结
    • 8.3.4. 烧结:Die-to-substrate、Substrate-baseplate or Heat sink、Die Pad to Interconnect等)
    • 8.3.5. 特斯拉电力电子的演变
    • 8.3.6. 芯片贴装技术趋势
  • 8.4. 高级基板
    • 8.4.1. 陶瓷基板技术的选择
    • 8.4.2. AlN:克服其机械弱点
    • 8.4.3. 金属化方法:DPC、DBC、AMB 和厚膜金属化
    • 8.4.4. 直接镀铜 (DPC):优点和缺点
    • 8.4.5。双键铜 (DBC):优点和缺点
    • 8.4.6. 活性金属釬焊 (AMB):优点和缺点
    • 8.4.7。陶瓷:CTE 不匹配
  • 8.5。消除热界面材料
    • 8.5.1。为什么在功率模块中使用 TIM?
    • 8.5.2. 为什么要消除 TIM?
    • 8.5.3。导热矽脂:其他Shortcomi NGS
    • 8.5.4。是否已在任何 EV 逆变器模块中消除了 TIM?
  • 8.6. 电力电子套件:电动汽车用例
    • 8.6.1。丰田普锐斯 2004-2010
    • 8.6.2. 2008年雷克萨斯
    • 8.6.3. 丰田普锐斯 2010-2015
    • 8.6.4。日产聆风 2012
    • 8.6.5。雷诺佐伊 2013 (Continental)
    • 8.6.6。本田雅阁 2014
    • 8.6.7。本田飞度(三菱)
    • 8.6.8。丰田普锐斯 2016 年起
    • 8.6.9。雪佛兰 Volt 2016(德尔福)
    • 8.6.10。凯迪拉克 2016 (日立)
    • 8.6.11。奥迪 e-tron 2018
    • 8.6.12。BWM i3(英飞凌)
    • 8.6.13。英飞凌的 HybridPACK 被多家制造商使用
    • 8.6.14。英飞凌
    • 8.6.15。德尔福、克里、橡树岭国家实验室和沃尔沃 <我>8.6.16。特斯拉的 SiC 封装
    • 8.6.17。这对 MOSFET 封装意味著什么?
    • 8.6.18。特斯拉 Model 3 2018 液冷
    • 8.6.19。Continental/捷豹路虎逆变器
    • 8.6.20。捷豹I-PACE 2019(大陆)液体库尔玲
    • 8.6.21。日产聆风定制逆变器设计
    • 8.6.22。日产聆风液冷
    • 8.6.23。Chevy Bolt 电源模块(由 LG Electronics/Infineon 提供)
    • 8.6.24。现代 E-GMP(英飞凌)

9. 预测摘要

  • 9.1.1. BEV 热泵预测
  • 9.1.2. OEM 冷却方法的未来全球趋势
  • 9.1.3. 采用冷却方法预测
  • 9.1.4. 沉浸式市场采用预测
  • 9.1.5。浸没流体体积预测
  • 9.1.6。电池和 TIM 需求趋势
  • 9.1.7。电动汽车电池组的 TIM:按汽车细分市场预测
  • 9.1.8。电动汽车电池组的 TIM:按 TIM 类型预测
  • 9.1.9。防火材料预测
  • 9.1.10。电机单位预测
  • 9.1.11。电力电子逆变器预测

10。公司简介

目录
Product Code: ISBN 9781913899554

Title:
Thermal Management for Electric Vehicles 2021-2031
Thermal management of Lithium-ion batteries, traction motors and power electronics. Materials, technologies, OEM strategies, player analysis and market forecasts.

"2 TWh of Liquid Cooled Electric Car Batteries by 2031."

The electric vehicle (EV) market is growing rapidly and has even proved resilient to COVID-19 related shutdowns, seeing year on year growth throughout 2020. Within the EV market, we are seeing increases in battery capacity, range, charging rates, wide bandgap semiconductors and high-performance traction motors. Additionally, EV fires and related recalls have brought the concept of thermal runaway detection, prevention and protection to the fore. All of these trends demand more effective thermal management systems, solutions and materials.

The latest report from IDTechEx on Thermal Management for Electric Vehicles details the OEM strategies, trends and emerging alternatives around the thermal management of Li-ion batteries, electric traction motors and power electronics. This information is gathered from primary and secondary sources in combination with an extensive model database of over 250 EV models sold between 2015 and 2020, giving a comprehensive overview of the topic. The technologies and strategies currently in use are described, analysed and forecast. Emerging alternatives like immersion cooling are also addressed and discussed for their suitability in future applications along with adoption forecasts. All forecasts are given through to 2031 and include quantities such as EV battery demand, battery thermal management strategy, thermal interface materials, electric motor demand and Si IGBT or SiC MOSFET inverters.

The thermal management strategy of EV batteries has evolved rapidly and will continue to do so. Source: Thermal Management for Electric Vehicles 2021-2031

Fast charging is a key trend in the EV market. Range anxiety becomes less of an issue if a vehicle can be charged in less than 30 minutes. Several vehicles have entered the market with this capability. More examples are emerging for 800 V systems too with the likes of the Porsche Taycan/ Audi e-tron GT platform as well as the new Hyundai E-GMP architecture. These higher voltages also help enable faster charging. However, thermal management is a key consideration for fast charging, keeping the batteries cool during this process helps increase the longevity of the cells but is also a major safety feature to prevent thermal runaway. For this reason, we have also seen interest in more novel technologies like immersion cooling.

Immersion cooling has potential in the EV market, creating new demand for dielectric fluids. Source: Thermal Management for EVs 2021-2031

In 2020, there was a great emphasis on EV fires and manufacturers like Hyundai and GM had to recall nearly 100,000 vehicles each. The estimated cost of these recalls was $900 million for Hyundai and $1.2 billion for GM, not to mention the harm to the reputation of their EVs and EVs in general. Whilst it is generally agreed that EV fires are less common than combustion vehicle fires, the EV fires tend to be much more severe and as more of an unknown quantity, gain more attention from the media. Detection and prevention of thermal runaway are extremely important, especially as regulations around EV safety start to be enforced. This also gives opportunities for fire-retardant or fire insulation materials to prevent or limit the progress of fire outside of the battery pack. Given there is no consensus on the design of an EV battery cell or pack, this makes the EV market an interesting landscape of potential for thermal management and fire protection component and material manufacturers.

Much like the batteries, there are several designs for cooling electric motors. The majority of the market is using permanent magnet-based traction motors with magnets that risk denaturing or becoming brittle at high temperatures. Even for motors without permanent magnets, the stator windings will increase in resistance at higher temperatures leading to decreased performance and lifetime as well as the potential to damage surrounding components. As manufacturers strive for higher efficiencies and power density, there are many developments and innovative designs such as the Audi e-tron's internal rotor water-glycol cooling system. The IDTechEx report covers thermal management of electric motors with EV use-cases, emerging technologies and a forecast of demand for EV traction motors.

Power electronics are often overlooked, but the main inverter is often the hottest component in an EV under normal operating conditions. Most of the market is using Si IGBTs which certainly generate significant heat and require effective thermal management which is often integrated into the motors coolant system. In recent years, we have seen significant adoption of SiC MOSFETs in the main traction inverter. This leads to higher switching frequencies and hence higher efficiency. The use of SiC also decreases the footprint of the package leading to higher power density and in turn a greater challenge in heat dissipation. In addition to the liquid cooling of these components, we see trends around the wire bonding, die-attach and substrate technology within the inverter packages themselves. Each OEM has its own strategy for power electronics and their implementation of options such as thermal interface materials. IDTechEx's latest report includes trends in power electronics design as well as several EV use-cases and forecasts the demand of Si IGBT and SiC MOSFET units.

Key topics:

  • Li-ion battery cooling: air, liquid, refrigerant and immersion
  • Thermal interface materials
  • Heat spreaders and cooling plates
  • Thermal runaway importance, detection and prevention
  • Fire safety: regulations and solutions
  • Electric motor thermal management
  • Power electronics thermal management

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Introduction to Thermal Management
  • 1.2. Optimal Temperatures for Multiple Components
  • 1.3. Impact of External Ambient Temperature and Climate Control
  • 1.4. Heat Pumps for BEVs Forecast
  • 1.5. Analysis of Battery Cooling Methods
  • 1.6. Future Global Trends in OEM Cooling Methodologies
  • 1.7. Adoption of Cooling Methodologies Forecast
  • 1.8. Immersion Fluids: Benchmarking
  • 1.9. Immersion Fluid Volume Forecast
  • 1.10. Summary of Key Trends for Liquid Cooling
  • 1.11. TIM for EV Battery Packs: Forecast by Vehicle Segment
  • 1.12. Battery Fires and Related Recalls in 2020
  • 1.13. Regulation Changes
  • 1.14. Fire Retardant Battery Materials Benchmark
  • 1.15. Fire Protection Materials Forecast
  • 1.16. Electric Motors: Permanent Magnet vs Alternatives
  • 1.17. Electric Motor Unit Forecast
  • 1.18. Motor Cooling Technology: OEM Strategies
  • 1.19. Power Electronics in Electric Vehicles
  • 1.20. Benchmarking Silicon, Silicon Carbide & Gallium Nitride
  • 1.21. The Transition to Silicon Carbide
  • 1.22. Power Electronics Inverter Forecast
  • 1.23. Traditional Power Module Packaging

2. INTRODUCTION

  • 2.1. Introduction to Thermal Management
  • 2.2. Industry Terms
  • 2.3. Optimal Temperatures for Multiple Components

3. IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE

  • 3.1. Range Calculations
  • 3.2. Impact of Ambient Temperature and Climate Control
  • 3.3. Model Comparison with Ambient Temperature
  • 3.4. Model Comparison with Climate Control
  • 3.5. Summary

4. INNOVATIONS IN CABIN HEATING

  • 4.1. Holistic Vehicle Thermal Management
  • 4.2. Technology Timeline
  • 4.3. PTC vs Heat Pump
  • 4.4. Recent EVs with Heat Pumps
  • 4.5. Heat Pumps for BEVs Forecast
  • 4.6. Further Innovations
  • 4.7. Advantages of Sophisticated Thermal Management
  • 4.8. Thermal Management Advanced Control: Key Players and Technologies

5. THERMAL MANAGEMENT OF LI-ION BATTERIES IN ELECTRIC VEHICLES

  • 5.1. Current Technologies and OEM Strategies
    • 5.1.1. Introduction to EV Battery Thermal Management
    • 5.1.2. Material Opportunities In and Around a Battery Pack
    • 5.1.3. Active vs Passive Cooling
    • 5.1.4. Passive Battery Cooling Methods
    • 5.1.5. Active Battery Cooling Methods
    • 5.1.6. Air Cooling
    • 5.1.7. Liquid Cooling
    • 5.1.8. Liquid Cooling: Design Options
    • 5.1.9. Liquid Cooling: Alternative Fluids
    • 5.1.10. Liquid Cooling: Large OEM Announcements
    • 5.1.11. Refrigerant Cooling
    • 5.1.12. Hyundai's Timeline to Refrigerant Cooling
    • 5.1.13. Coolants: Comparison
    • 5.1.14. Cooling Strategy Thermal Properties
    • 5.1.15. Analysis of Battery Cooling Methods
    • 5.1.16. Main Incentives for Liquid Cooling
    • 5.1.17. IONITY: a European Fast Charging Network
    • 5.1.18. Shifting OEM Strategies - Liquid Cooling
    • 5.1.19. Future Global Trends in OEM Cooling Methodologies
    • 5.1.20. OEM Cooling Methodologies by Region
    • 5.1.21. Adoption of Cooling Methodologies Forecast
    • 5.1.22. IDTechEx Outlook
  • 5.2. Immersion Cooling for Li-ion Batteries in EVs
    • 5.2.1. Immersion Cooling: Introduction
    • 5.2.2. Single-phase vs Two-phase Cooling
    • 5.2.3. Immersion Cooling Fluids Requirements
    • 5.2.4. Players: Immersion Fluids for Electric Vehicles (1)
    • 5.2.5. Players: Immersion Fluids for Electric Vehicles (2)
    • 5.2.6. Players: Immersion Fluids for Electric Vehicles (3)
    • 5.2.7. Immersion Fluids: Density and Thermal Conductivity
    • 5.2.8. Immersion Fluids: Operating Temperature
    • 5.2.9. Immersion Fluids: Viscosity
    • 5.2.10. Immersion Fluids: Costs
    • 5.2.11. Immersion Fluids: Summary
    • 5.2.12. Players: XING Mobility, 3M and Castrol
    • 5.2.13. Players: Rimac and Solvay
    • 5.2.14. Players: M&I Materials and Faraday Future
    • 5.2.15. Players: Exoès, e-Mersiv and FUCHS Lubricants
    • 5.2.16. Players: Kreisel and Shell
    • 5.2.17. McLaren Speedtail and Artura
    • 5.2.18. Mercedes-AMG
    • 5.2.19. SWOT Analysis - Immersion Cooling for EVs
    • 5.2.20. Immersion Market Adoption Forecast
    • 5.2.21. Immersion Fluid Volume Forecast
  • 5.3. Phase Change Materials (PCMs)
    • 5.3.1. Phase Change Materials (PCMs) Emerging for EVs
    • 5.3.2. PCM Categories and Pros and Cons
    • 5.3.3. Typical Materials
    • 5.3.4. Phase Change Materials - Overview
    • 5.3.5. Phase Change Materials - Overview (2)
    • 5.3.6. Operating Temperature Range of Commercial PCMs
    • 5.3.7. PCMs: Players in EVs
    • 5.3.8. Phase Change Material as Thermal Energy Storage
    • 5.3.9. PCM vs Battery Case Study
    • 5.3.10. Player: Sunamp
  • 5.4. Heat Spreaders and Cooling Plates
    • 5.4.1. Heat Spreaders or Interspersed Cooling Plates
    • 5.4.2. Chevrolet Volt and Dana
    • 5.4.3. Advanced Cooling Plates
    • 5.4.4. Advanced Cooling Plates: Roll Bond Aluminium
    • 5.4.5. Graphite Heat Spreaders
  • 5.5. Other Interesting Developments
    • 5.5.1. Active Cell-to-cell Cooling Solutions: Cylindrical
    • 5.5.2. Printed Temperature Sensors and Heaters
    • 5.5.3. Is Tab Cooling a Solution?
    • 5.5.4. Thermoelectric Cooling
    • 5.5.5. Skin Cooling: Aptera Solar EV
  • 5.6. Thermal Management of EV Batteries: OEM Use-cases
    • 5.6.1. Audi e-tron
    • 5.6.2. Audi e-tron GT
    • 5.6.3. BMW i3
    • 5.6.4. BYD Blade
    • 5.6.5. Chevrolet Bolt
    • 5.6.6. Faraday Future FF 91
    • 5.6.7. Hyundai Kona
    • 5.6.8. Hyundai E-GMP
    • 5.6.9. Jaguar I-PACE
    • 5.6.10. MG ZS EV
    • 5.6.11. Rivian
    • 5.6.12. Romeo Power Thermal Management
    • 5.6.13. Tesla Model S P85D
    • 5.6.14. Tesla Model 3/Y
    • 5.6.15. Tesla Eliminating the Battery Module
    • 5.6.16. Toyota Prius PHEV
    • 5.6.17. Toyota RAV4 PHEV
    • 5.6.18. Voltabox
    • 5.6.19. Xerotech
  • 5.7. TIM for EV Battery Packs
    • 5.7.1. Introduction to Thermal Management for EVs
    • 5.7.2. TIM - Pack and Module Overview
    • 5.7.3. TIM Application - Pack and Modules
    • 5.7.4. TIM Application - Cell Format
    • 5.7.5. Dow Battery Pack Materials
    • 5.7.6. Henkel Battery Pack Materials
    • 5.7.7. DuPont Battery Pack Materials
    • 5.7.8. Key Properties for TIMs in EVs
    • 5.7.9. Gap Pads in EV Batteries
    • 5.7.10. Switching to Gap Fillers from Pads
    • 5.7.11. Dispensing TIMs Introduction
    • 5.7.12. Challenges for Dispensing TIM
    • 5.7.13. Material Options and Market Comparison
    • 5.7.14. The Silicone Dilemma for the Automotive Industry
    • 5.7.15. Silicone Alternatives
    • 5.7.16. Main Players and Considerations
    • 5.7.17. Main Players and Recent Announcements (1)
    • 5.7.18. Main Players and Recent Announcements (2)
    • 5.7.19. EV Use-case: Audi e-tron
    • 5.7.20. EV Use-case: Chevrolet Bolt
    • 5.7.21. EV Use-case: Fiat 500e
    • 5.7.22. EV Use-case: MG ZS EV
    • 5.7.23. EV Use-case: Nissan Leaf
    • 5.7.24. EV Use-case: Smart Fortwo (Mercedes)
    • 5.7.25. EV Use-case: Tesla Model 3/Y
    • 5.7.26. EV Use-cases: Tesla, Chevrolet, Hyundai
    • 5.7.27. Tesla Eliminating the Battery Module
    • 5.7.28. EV Use-case Summary
    • 5.7.29. Commercial Benchmark for EV Battery TIMs
    • 5.7.30. Battery and TIM Demand Trends
    • 5.7.31. TIM for EV Battery Packs: Forecast by Vehicle Segment
    • 5.7.32. TIM for EV Battery Packs: Forecast by TIM Type
    • 5.7.33. Other Applications for TIM
  • 5.8. Thermal Runaway Importance, Detection and Prevention
    • 5.8.1. Thermal Runaway and Fires in EVs
    • 5.8.2. Battery Fires and Related Recalls in 2020
    • 5.8.3. Battery Fires in South Korea
    • 5.8.4. Causes of Battery Fires
    • 5.8.5. EV Fires Compared to ICE
    • 5.8.6. Causes of Failure
    • 5.8.7. The Nail Penetration Test
    • 5.8.8. Stages of Thermal Runaway
    • 5.8.9. Cell Chemistry and Stability
    • 5.8.10. Thermal Runaway Propagation
    • 5.8.11. Many Considerations to Safety
    • 5.8.12. Prevention of Battery Shorting: Soteria
    • 5.8.13. Regulation Changes
    • 5.8.14. What Level of Prevention?
    • 5.8.15. Detecting Thermal Runaway in a Battery Pack
    • 5.8.16. Gas Generation / detection
    • 5.8.17. Opportunities for Sensors
    • 5.8.18. Commercial Gas Sensing for Thermal Runaway Detection
  • 5.9. Fire Protection Materials
    • 5.9.1. Module and Pack Thermal Insulation Materials
    • 5.9.2. Pack Level Prevention Materials
    • 5.9.3. Emerging Fire Safety Solutions
    • 5.9.4. Aerogels in EV battery packs
    • 5.9.5. Aspen Aerogels US OEM Contract
    • 5.9.6. Fire Resistant Coatings
    • 5.9.7. Thermal Runaway Prevention: Cylindrical Cell-to-cell
    • 5.9.8. 3M - Insulation Materials
    • 5.9.9. ADA Technologies - Thermal Runaway Propagation Prevention Materials
    • 5.9.10. Dow Silicone Solutions
    • 5.9.11. DuPont
    • 5.9.12. ITW Formex
    • 5.9.13. Covestro Polycarbonates
    • 5.9.14. Elkem Silicone Solutions
    • 5.9.15. HeetShield - Ultra-Thin Insulations
    • 5.9.16. H.B. Fuller
    • 5.9.17. Fire Retardant Battery Materials Benchmark
    • 5.9.18. Fire Retardant Battery Materials Outlook
    • 5.9.19. Fire Protection Materials Forecast
  • 5.10. Battery Enclosures
    • 5.10.1. Lightweighting Battery Enclosures
    • 5.10.2. Composite Battery Enclosures
    • 5.10.3. Alternatives to Phenolic Resins
    • 5.10.4. Composite Parts at a Scale to Drive Sustainable Transportation - TRB Lightweight Structures
    • 5.10.5. Are Polymers Suitable Housings?
    • 5.10.6. Towards Composite Enclosures?
    • 5.10.7. Continental Structural Plastics - Honeycomb Technology

6. THERMAL MANAGEMENT IN ELECTRIC VEHICLE CHARGING STATIONS

  • 6.1. Basics of electric vehicle charging mechanisms
  • 6.2. Conductive Charging Types
  • 6.3. How long does it take to charge an electric vehicle?
  • 6.4. The trend towards DC fast charging
  • 6.5. Fast Charging Gains - 300 kW Needed for Cars?
  • 6.6. Thermal Considerations for Fast Charging
  • 6.7. Liquid Cooled Charging Stations
  • 6.8. Tritium - DC Charging Solution Provider
  • 6.9. Cable Cooling to Achieve High Power Charging
  • 6.10. Tesla Adopts Liquid Cooled Cable for its Supercharger
  • 6.11. Tesla: Liquid Cooled Connector for Ultra Fast Charging
  • 6.12. ITT Cannon Liquid Cooled Charging
  • 6.13. Brugg eConnect Liquid Cooled Cables
  • 6.14. Immersion Cooled Charging Stations

7. THERMAL MANAGEMENT OF ELECTRIC MOTORS

  • 7.1. Motor Cooling Strategies
    • 7.1.1. Electric Traction Motors: Types
    • 7.1.2. Electric Motors: Permanent Magnet vs Alternatives
    • 7.1.3. Electric Motor Unit Forecast
    • 7.1.4. Cooling Electric Motors
    • 7.1.5. Current OEM Strategies: Air Cooling
    • 7.1.6. Current OEM Strategies: Oil Cooling
    • 7.1.7. Ricardo's New Motor
    • 7.1.8. Current OEM Strategies: Water-glycol Cooling
    • 7.1.9. Electric Motor Thermal Management Overview
    • 7.1.10. Cooling Technology: OEM Strategies
    • 7.1.11. Motor Cooling Technology Outlook
    • 7.1.12. Recent Advancements in Liquid Cooling
    • 7.1.13. Emerging Technologies: Immersion Cooling
    • 7.1.14. Emerging Technologies: Refrigerant Cooling
    • 7.1.15. Emerging Technologies: Phase Change Materials
    • 7.1.16. Potting & Encapsulation
    • 7.1.17. Potting & Encapsulation: Players
  • 7.2. Emerging Motor Developments
    • 7.2.1. Radial Flux vs Axial Flux Motors
    • 7.2.2. Axial Flux Motors: Interesting Players
    • 7.2.3. List of Axial Flux Motor Players
    • 7.2.4. In-Wheel Motors
    • 7.2.5. DHX Ultra High-torque Motors
    • 7.2.6. Equipmake: Spoke Geometry for PM Motors
    • 7.2.7. Diabatix: Rapid Design of Cooling Components
    • 7.2.8. Integrated Stator Housings
    • 7.2.9. Integration with Vehicle Thermal Management
  • 7.3. Thermal Management of EV Motors: OEM Use-cases
    • 7.3.1. Audi e-tron
    • 7.3.2. BMW i3
    • 7.3.3. Chevrolet Bolt
    • 7.3.4. Hyundai E-GMP
    • 7.3.5. Jaguar I-PACE
    • 7.3.6. Nissan Leaf
    • 7.3.7. Tesla Model S
    • 7.3.8. Tesla Model 3
    • 7.3.9. Toyota Prius

8. THERMAL MANAGEMENT IN ELECTRIC VEHICLE POWER ELECTRONICS

  • 8.1. Introduction
    • 8.1.1. What is Power Electronics?
    • 8.1.2. Power Electronics in Electric Vehicles
    • 8.1.3. Power Electronics Device Ranges
    • 8.1.4. Power Switches (Transistors)
    • 8.1.5. Power Switch History
    • 8.1.6. Wide-bandgap Semiconductors
    • 8.1.7. Benchmarking Silicon, Silicon Carbide & Gallium Nitride
    • 8.1.8. Applications for Silicon Carbide & Gallium Nitride
    • 8.1.9. Inverter Power Modules
    • 8.1.10. Inverter Package Designs
    • 8.1.11. Power Module Packaging Over the Generations
    • 8.1.12. Traditional Power Module Packaging
    • 8.1.13. Inverter Benchmarking
    • 8.1.14. Module Packaging Material Dimensions
    • 8.1.15. Power Electronics Cooling
    • 8.1.16. Double-sided Cooling
    • 8.1.17. Baseplate, Heat Sink, Encapsulation Materials
    • 8.1.18. Automotive Power Module Leaders
    • 8.1.19. Power Module Supply Chain & Innovations
    • 8.1.20. The Transition to SiC
    • 8.1.21. Power Electronics Inverter Forecast
  • 8.2. Beyond Wire Bonds
    • 8.2.1. Wire Bonds
    • 8.2.2. Al Wire Bonds: A Common Failure Point
    • 8.2.3. Advanced Wire Bonding Techniques
    • 8.2.4. Tesla's Novel Bonding Technique
    • 8.2.5. Direct Lead Bonding (Mitsubishi)
    • 8.2.6. Technology Evolution Beyond Al Wire Bonding
  • 8.3. Beyond Solder
    • 8.3.1. Die and Substrate Attach are Common Failure Modes
    • 8.3.2. The Choice of Solder Technology
    • 8.3.3. Technology Evolution: Ag Sintering
    • 8.3.4. Sintering: Die-to-substrate, Substrate-baseplate or Heat sink, Die Pad to Interconnect, etc.)
    • 8.3.5. Evolution of Tesla's Power Electronics
    • 8.3.6. Die Attach Technology Trends
  • 8.4. Advanced Substrates
    • 8.4.1. The Choice of Ceramic Substrate Technology
    • 8.4.2. AlN: Overcoming its Mechanical Weakness
    • 8.4.3. Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation
    • 8.4.4. Direct Plated Copper (DPC): Pros and Cons
    • 8.4.5. Double Bonded Copper (DBC): Pros and Cons
    • 8.4.6. Active Metal Brazing (AMB): Pros and Cons
    • 8.4.7. Ceramics: CTE Mismatch
  • 8.5. Eliminating Thermal Interface Materials
    • 8.5.1. Why use TIM in Power Modules?
    • 8.5.2. Why the Drive to Eliminate the TIM?
    • 8.5.3. Thermal Grease: Other Shortcomings
    • 8.5.4. Has TIM Been Eliminated in any EV Inverter Modules?
  • 8.6. Power Electronics Packages: EV Use-cases
    • 8.6.1. Toyota Prius 2004-2010
    • 8.6.2. 2008 Lexus
    • 8.6.3. Toyota Prius 2010-2015
    • 8.6.4. Nissan Leaf 2012
    • 8.6.5. Renault Zoe 2013 (Continental)
    • 8.6.6. Honda Accord 2014
    • 8.6.7. Honda Fit (by Mitsubishi)
    • 8.6.8. Toyota Prius 2016 onwards
    • 8.6.9. Chevrolet Volt 2016 (by Delphi)
    • 8.6.10. Cadillac 2016 (by Hitachi)
    • 8.6.11. Audi e-tron 2018
    • 8.6.12. BWM i3 (by Infineon)
    • 8.6.13. Infineon's HybridPACK is used by Multiple Manufacturers
    • 8.6.14. Infineon
    • 8.6.15. Delphi, Cree, Oak Ridge National Laboratory and Volvo
    • 8.6.16. Tesla's SiC Package
    • 8.6.17. What Does This Mean for the MOSFET Package?
    • 8.6.18. Tesla Model 3 2018 Liquid Cooling
    • 8.6.19. Continental / Jaguar Land Rover Inverter
    • 8.6.20. Jaguar I-PACE 2019 (Continental) Liquid Cooling
    • 8.6.21. Nissan Leaf Custom Inverter Design
    • 8.6.22. Nissan Leaf Liquid Cooling
    • 8.6.23. Chevy Bolt Power Module (by LG Electronics / Infineon)
    • 8.6.24. Hyundai E-GMP (Infineon)

9. SUMMARY OF FORECASTS

  • 9.1.1. Heat Pumps for BEVs Forecast
  • 9.1.2. Future Global Trends in OEM Cooling Methodologies
  • 9.1.3. Adoption of Cooling Methodologies Forecast
  • 9.1.4. Immersion Market Adoption Forecast
  • 9.1.5. Immersion Fluid Volume Forecast
  • 9.1.6. Battery and TIM Demand Trends
  • 9.1.7. TIM for EV Battery Packs: Forecast by Vehicle Segment
  • 9.1.8. TIM for EV Battery Packs: Forecast by TIM Type
  • 9.1.9. Fire Protection Materials Forecast
  • 9.1.10. Electric Motor Unit Forecast
  • 9.1.11. Power Electronics Inverter Forecast

10. COMPANY PROFILES