NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

电子皮肤贴片 2021-2031年

Electronic Skin Patches 2021-2031

出版商 IDTechEx Ltd. 商品编码 1015121
出版日期 内容资讯 英文 503 Slides
商品交期: 最快1-2个工作天内
价格
电子皮肤贴片 2021-2031年 Electronic Skin Patches 2021-2031
出版日期: 2021年06月23日内容资讯: 英文 503 Slides
简介

标题
电子皮肤贴片2021-2031年
对靈活、可穿戴、智能皮肤贴片商业化的最全面评估。

"到 2031 年,电子皮肤贴片市场价值每年将超过 300 亿美元。"

这份报告描述了电子皮肤贴片的市场、技术和参与者。涵盖28 个应用领域和 127 家公司,2010-2020 年的历史市场数据和 2021-2031 年的市场预测,是针对该产品领域编制的最全面的研究。它揭示了重大机遇,到 2021 年该行业的电子皮肤贴片年收入将超过 100 亿美元,预计到 2031 年这一数字将增长到 300 亿美元以上。

皮肤贴片是贴在皮肤上的可穿戴产品。电子元件涉及传感器、执行器、处理器和通信等电子功能的集成,使产品变得连接和 "智能" 。在许多方面,皮肤贴片充当最终的可穿戴电子设备,以最小的负担和最大的舒适度增强佩戴者的能力。因此,从 2014 年开始,人们对电子皮肤贴片的兴趣飙升,这是围绕 "可穿戴设备" 的重大炒作和市场增长的副产品。

然而,该行业内的一些产品类型超越了这种炒作。一些皮肤贴片产品,特别是在糖尿病管理、心血管监测和其他生命体征监测方面,已经取代了成熟市场中的现有选择,每年为处于这一浪潮最前沿的公司创造数十亿美元的新收入。然而,成功并非无处不在。本报告中讨论的每个市场都位于一个独特的生态系统中,具有不同的参与者、驱动因素、限制和历史。

因此,该报告依次审视了电子皮肤贴片的每个应用领域,讨论了相关技术、产品类型、竞争格局、行业参与者、定价、历史收入和市场预测。涵盖的领域包括糖尿病管理、心血管监测设备(MCT、Holter 监测器、事件监测器和相关产品)、医疗患者监测(住院和门诊)、运动传感、温度传感、药物和化妆品输送贴片、电刺激设备、智能伤口护理等新兴选择。该报告包含回溯到 2010 年研究的每个产品部门的历史收入数据,包括公司针对较大部门的数据。该报告还包含对每个关键应用领域10 年以上的详细市场预测。

报告中讨论的 28 个应用领域
来源 IDTechEx

"电子皮肤贴片" 的产品类别隐藏了大量的多样性。虽然许多人可能将皮肤贴片想像成贴近皮肤的薄型、高度贴合的设备,但现实是,当今许多最成功的产品仍然是相对笨重的设备。因此,报告中的每一章还包含对与智能贴片未来发展相关的技术领域的讨论,特别是围绕柔性、可拉伸和保形电子元件等领域。这些技术的发展不仅将使更多产品能够部署为皮肤贴片,而且还将改进现有电子皮肤贴片的外形。IDTechEx 在柔性电子、可拉伸电子、薄型和柔性电池、智能纺织品和其他相关主题等主题中的其他工作中也广泛涵盖了这一点。

该报告背后的研究由 IDTechEx 分析师经过数年编制而成。它遵循现有的可穿戴技术、柔性电子、可拉伸和保形电子、电子纺织品、高级伤口护理、生物电子、传感器和其他医疗设备等领域的覆盖范围。该方法涉及初级和次级研究的混合,重点是与来自开发商业电子皮肤贴片的公司的高管和科学家交谈。因此,该报告汇编了 127 家公司和项目的案例研究,每个公司和项目都会随著时间的推移进行更新,并在相应的产品生态系统中进行比较。

来源 IDTechEx

报告背后的独特立场和经验

IDTechEx在涵盖该主题方面享有特别独特的地位。经验丰富的分析师团队以数十年的经验为基础,涵盖新兴技术市场,尤其是柔性电子等领域,这些领域是电子皮肤贴片的核心。IDTechEx 在组织涵盖柔性和可穿戴电子产品的领先行业会议和展览以及涵盖特定创新趋势(例如医疗传感器或相关领域)的小型活动方面的平行活动历来支持这一点。IDTechEx 具有在这些主题领域中策划网络的独特能力,从而促进本报告中的报告。

来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师进行长达 30 分钟的电话通话,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要

  • 1.1. 执行介绍:电子皮肤贴
  • 1.2. 应用概述
  • 1.3. 应用、市场规模和前景
  • 1.4. 糖尿病管理生态系统
  • 1.5。CGM引领潮流
  • 1.6. 胰岛素泵和贴片泵
  • 1.7。糖尿病管理的前景
  • 1.8。通过皮肤贴片监测心脏
  • 1.9. 心脏监测的参与者和产品类型
  • 1.10. 心脏监测皮肤贴片:历史数据:2010-2020
  • 1.11. 心脏监测皮肤贴片:市场预测
  • 1.12。通用设备的应用潜力
  • 1.13. 历史市场数据,2010-2020
  • 1.14. 2021-2031 年市场预测
  • 1.15。皮肤贴片温度传感:跨越 13 个案例研究的用例
  • 1 .16。主要结论:感温皮肤贴片
  • 1.17. 电刺激产品类型
  • 1.18. 生物电子医学中的皮肤贴片
  • 1.19. 通过皮肤贴片进行电刺激:市场数据(2010-2019)
  • 1.20。通过皮肤贴片进行电刺激:市场预测(2021-2031)
  • 1.21. 通过皮肤贴片进行离子导入:市场数据(2010-2019)
  • 1.22。通过皮肤贴片进行离子导入:市场预测(2020-2030)
  • 1.23。主要结论:离子电渗疗法
  • 1.24。考试案例研究的选手普莱斯

2. 简介

  • 2.1.1. 皮肤贴片案例:增强人体
  • 2.1.2. 皮肤贴片案例:改进设备外形
  • 2.1.3. 定义和排除
  • 2 .1.4. 皮肤贴片的历史
  • 2.1.5. 应用、市场规模和前景
  • 2.1.6. 报销推动商业商业模式
  • 2.1.7. 专利:按受让人划分的有效专利总数
  • 2.1.8。专利随著时间的推移
  • 2.1.9。专利:受让人的活跃和强大的专利
  • 2.1.10。背景:可穿戴设备炒作
  • 2.1.11。词汇表
  • 2.1.12。词汇表(续)
  • 2.2. 应用概述
    • 2.2.1. 与成熟产品竞争的皮肤贴剂
    • 2.2.2. 围绕皮肤补丁创建新标记
    • 2.2.3. 栏目内容

3. 通过皮肤贴片进行糖尿病管理

  • 3.1.1. 背景:糖尿病简介
  • 3.1.2. 糖尿病患病率
  • 3.1.3. 背景:糖尿病呈上升趋势
  • 3.1.4. 背景:糖尿病的成本
  • 3.1.5。背景:糖尿病管理过程
  • 3.1.6。糖尿病管理生态系统
  • 3.1.7。糖尿病管理设备路线图:总结
  • 3.1.8。糖尿病管理设备路线图:传感器
  • 3.1.9。本报告的覆盖范围
  • 3.2. 连续血糖监测 (CGM)
    • 3.2.1. 连续血糖监测 (CGM) 案例
    • 3.2.2. 典型 CGM 设备的剖析
    • 3.2.3. CGM 通过皮肤补丁部署
    • 3.2.4. CGM 设备的比较指标
    • 3.2.5. 示例:CGM 设备随时间变化的准确性
    • 3.2.6. CGM:技术
    • 3.2.7. CGM 传感器化学
    • 3.2.8。感应灯丝结构
  • 3.3. CGM:主要参与者概述
    • 3.3.1. CGM:主要参与者概述
    • 3.3.2. 雅培实验室:简介
    • 3.3.3. 雅培实验室:CGM 业务
    • 3.3.4. 雅培:自由泳R 自由
    • 3.3.5. 雅培: "有线□"
    • 3.3.6. 雅培:设备和传感器结构
    • 3.3.7。Dexcom:介绍
    • 3.3.8。Dexcom:CGM 产品
    • 3.3.9。Dexcom:传感器结构
    • 3.3.10。美敦力:简介
    • 3.3.11。美敦力:糖尿病和 CGM 业务
    • 3.3.12。美敦力:传感器结构
    • 3.3.13。美敦力:走向闭环
    • 3.3.14。美敦力:CGM 专利
    • 3.3.15。罗氏:概述
    • 3.3.16。罗氏:CGM 专利
    • 3.3.17。感觉学
    • 3.3.18。Ascensia & POCTech
    • 3.3.19。中通
    • 3.3.20。Medtrum:CGM 设备和胰岛素泵
    • 3.3.21。Medtrum:传感技术
    • 3.3.22。Medtrum:人造胰腺的具体发展步驟
    • 3.3.23。中通
    • 3.3.24。Aga矩阵和波形技术
    • 3.3.25。英飞凌
    • 3.3.26。PK活力
    • 3.3.27。佐野
    • 3.3.28。Verily/Google:隐形眼镜
  • 3.4. 无创血糖监测
    • 3.4.1. 背景:葡萄糖在微博DY
    • 3.4.2. 用于葡萄糖监测的不同分析物的评估
    • 3.4.3. 评估准确性的关键标准
    • 3.4.4. 背景:FDA 要求
    • 3.4.5。无创血糖监测方法
    • 3.4.6. 使用每种技术的公司
    • 3.4.7。使用每种技术(其他流体)的公司
    • 3.4.8。无创血糖监测何时商业化?
    • 3.4.9。非侵入性血糖监测的著名引述
  • 3.5。胰岛素deliv ERY
    • 3.5.1. 胰岛素输送:介绍
    • 3.5.2. 糖尿病管理设备路线图:胰岛素输送
    • 3.5.3. 胰岛素泵:介绍
    • 3.5.4. 目前可用的胰岛素泵
    • 3.5.5。胰岛素泵故障
    • 3.5.6。胰岛素贴片泵
    • 3.5.7。示例:Medtronic 的贴片泵?
    • 3.5.8。贴片泵与传统选项的定价模型
    • 3.5.9。胰岛素泵市场
    • 3.5.10。胰岛素泵参与者和市场份额
    • 3.5.1 1. 市场:贴片泵与传统输液泵
    • 3.5.12。比较胰岛素泵和 CGM
    • 3.5.13。胰岛素泵的前景
  • 3.6. 连接胰岛素泵和 CGM:走向闭环和人工胰腺
      <李>3.6.1。今天:混合闭环系统
    • 3.6.2. 示例:美敦力的进展
    • 3.6.3. 目标:关闭反馈回路
    • 3.6.4. 例子和伙伴关系
    • 3.6.5。示例:DiabeLoop
    • 3.6.6。Medtrum:致力于人造胰腺
  • 3.7. 市场数据:历史和预测
    • 3.7.1. 皮肤斑块和糖尿病:预测摘要
    • 3.7.2. 概述:2020 年 CGM 市场份额和参与者
    • 3.7.3. 糖尿病管理的重点转移,历史数据:2010-2020
    • 3.7.4。试纸业务下滑
    • 3.7.5。CGM增长加速
    • 3.7.6。胰岛素泵市场
    • 3.7.7。市场:贴片泵与传统输液泵
    • 3.7.8。孔定量糖尿病和CGM对准焦点预测
    • 3.7.9。构建自上而下的预测场景
    • 3.7.10。CGM:市场预测(收入)
    • 3.7.11。CGM:市场预测(销量)
    • 3.7.12。胰岛素泵:市场预测(收入)
    • 3.7.13。胰岛素泵:市场预测(销量)
    • 3.7.14。完整数据集:糖尿病管理中的皮肤斑块,2010-2020(历史)和 2021-2031(预测)
    • 3.7.15。完整数据集:糖尿病管理市场,2010-2020(历史)和 2021-2 031(预测)

4. 一般患者监测:生命体征和相关指标

  • 4.1. 介绍
    • 4.1.1. 介绍
    • 4.1.2. 皮肤贴片的驱动因素和要求
    • 4.1.3. 通用设备的应用潜力
    • 4.1.4. 通用监控设备的部署挑战
    • 4.1.5. 随著时间的推移不断发展的市场动态
    • 4.1.6。一般监控需要一个只有较大的参与者才能提供的基础设施
    • 4.1.7。历史市场数据,2010-2020
    • 4.1.8。2021-2031 年市场预测
  • 4.2. 住院监护
    • 4.2.1. 传统住院监护
    • 4.2.2. 拆线盒
    • 4.2.3. 新兴的皮肤补丁选项
    • 4.2.4. 玩家和方法
    • 4.2.5. 飞利浦
    • 4.2.6. 生物智能感知
    • 4.2.7. 万岁
    • 4.2.8. 外科公司(前身为 Sensium)
    • 4.2.9. 重要连接
    • 4.2.10。Isansys 生活护理 <我>4.2.11。无线住院监护的市场数据和预测
  • 4.3. 用皮肤贴片进行门诊监测
    • 4.3.1. 介绍
    • 4.3.2. 生命信号
    • 4.3.3. 三星
    • 4.3.4. MC10
    • 4.3.5. DevIn nova/Scaleo Medical
    • 4.3.6. 艾凡尼克斯
    • 4.3.7。Avanix - 商业模式和目标里程碑
    • 4.3.8。历史:高通生活
    • 4.3.9。Qualcomm Life/Capsule Technologies
    • 4.3.10。无线门诊监测的市场数据和预测

5. 心血管监测皮肤贴片

  • 5.1.1. 简介 - 通过可穿戴设备进行心血管监测
  • 5.1.2. 简介 - 测量生物电势
  • 5.1.3. 技术概述 -测量生物电势的电路
  • 5.1.4. 简介 - 心电图(ECG 或 EKG)
  • 5.1.5。心脏监测设备
  • 5.1.6。心脏监测设备类型 - 皮肤贴片
  • 5.1.7。公司和产品类型
  • 5.1.8 . 技术概览 - 电极特性
  • 5.1.9。一次性 Ag/AgCl 电极
  • 5.1.10。电极:传统方法
  • 5.1.11。带一次性电极的皮肤贴片
  • 5.1.12。带有集成电极的皮肤贴片
  • 5.2. 报销
    • 5.2.1. 可穿戴心脏监护仪的报销代码
    • 5.2.2. 2021 年:新的报销结构到位
    • 5.2.3. 2021 年代码更改后的影响和展望
  • 5.3. 球员
    • 5 .3.1. 对 20 位行业参与者的总结和访谈
    • 5.3.2. 飞利浦
    • 5.3.3. 生物遥测公司
    • 5.3.4. 生物遥测:时间轴
    • 5.3.5。节奏
    • 5.3.6. 斯科特关怀
    • 5.3.7。福田电子
    • 5.3.8。籐田医疗器械
    • 5.3.9。比特
    • 5.3.10。Byteflies 和 Quad Industries
    • 5.3.11。心电图
    • 5.3.12。维沃米
    • 5.3.13。昆腾医疗
    • 5.3.14。西南医疗
    • 5.3.15。SWMedical - CardiNova
    • 5.3.16。赛思科技
    • 5.3.17。根蒂
    • 5.3.18。预防解决方案
    • 5.3.19。知道
    • 5.3.20。博萨姆
    • 5.3.21。皮质
    • 5.3.22。卡迪奥
    • 5.3.23。卡迪奥 (2)
    • 5.3.24。霍尔斯特中心:皮肤补丁
    • 5.3.25。打点
    • 5.3.2 6. Mezoo
    • 5.3.27。水明
    • 5.3.28。美敦力:SEEQ MCT(已停产)
    • 5.3.29。LumiraDx/FitLinxx:Ampstrip(已停产)
  • 5.4. 与其他形式因素的竞争
    • 5.4.1. 用于动态心脏监测的其他形式因素
    • 5.4.2. 可穿戴与植入式监测
    • 5.4.3. 示例:美敦力 (SEEQ & LINQ)
    • 5.4.4. 比较:胸带
    • 5.4.5。比较:服装
    • 5.4.6. 比较:便携式设备
    • 5.4.7。COM型坯:Smartwatch可光HRM
  • 5.5。市场数据和预测
    • 5.5.1. 市场概况和预测
    • 5.5.2. COVID-19 的影响
    • 5.5.3. 心脏监测皮肤贴片:历史数据:2010-2020
    • 5.5.4。心脏监测皮肤贴片:市场预测
    • 5.5.5。带表的完整数据集:2010-2019(历史)和 2020-2030(预测)
    • 5.5.6。主要结论:心脏监测皮肤贴片

6. 胎儿心率监测

  • 6.1. 胎儿监护
  • 6.2. 莫妮卡医疗保健
  • 6.3. 通用电气医疗
  • 6.4. 飞利浦
  • 6.5。主要结论和市场数据

7. 温度感应皮肤贴片

  • 7.1. 简介 - 体温
  • 7.2. 温度传感技术选项
  • 7.3. 医用温度传感的方法和标准
  • 7.4. 用于温度感应的皮肤贴片
  • 7.5。皮肤贴片温度传感:13 个案例研究中的用例
  • 7.6. VIV aLNK
  • 7.7. VivaLNK & Reckitt Benckiser
  • 7.8。VivaLNK:COVID-19 响应
  • 7.9。生物智能感知
  • 7.10。蓝色火花
  • 7.11。Blue Spark & TempTraqR
  • 7.12。生命科学技术
  • 7.13。Isansys 生活护理
  • 7.14。瑞英医疗
  • 7.15。邦布顿
  • 7.16。CSEM
  • 7.17。科思创
  • 7.18。崔斯科技
  • 7.19。替代选项:鼓室温度感应
  • 7.20。主要结论:感温皮肤贴片

8. 电气STIMULATIO NWITH皮肤贴剂

  • 8.1.1. 简介:电刺激的类型
  • 8.1.2. 电刺激的分化
  • 8.1.3. 电刺激术语
  • 8.1.4. 电刺激产品类型
  • 8 .1.5。医疗与非医疗设备
  • 8.1.6。生物电子医学:定义和背景
  • 8.1.7。生物电子医学的主要形式
  • 8.1.8。生物电子医学的演变
  • 8.1.9。生物电子医学中的皮肤贴片
  • 8.2. 十
    • 8.2.1. TENS - 简介
    • 8.2.2. 创新健康解决方案:NSS-2 Bridge
    • 8.2.3. BeWellConnect:MyTens
    • 8.2.4. NeuroMetrix:Quell
    • 8.2.5. Theranica: Nerivio Migra
  • 8.3. EMS/NME S/FES
    • 8.3.1. EMS、NMES 和 FES
    • 8.3.2. EMS/NMES 的应用
    • 8.3.3. 示例:俄罗斯刺激
    • 8.3.4. 示例:治疗设置和用途
    • 8.3.5. 刺激的特性(如治疗重点所示)
    • 8.3.6. 第一类医学:geko
    • 8.3.7。示例:HiDow
    • 8.3.8。示例:HiDow
    • 8.3.9. 海沃生物科技
  • 8.4. 市场数据和预测
    • 8.4.1. 通过皮肤贴片进行电刺激:市场数据(2010-2019)
    • 8.4.2. 通过皮肤贴片进行电刺激:市场预测(2021-2031)

9. 离子电渗疗法皮肤贴片:化妆品和药物递送

  • 9.1.1. 简介 - 离子电渗疗法
  • 9.1.2. c osmetics
  • 9.1.3. 化妆品皮肤贴片
  • 9.1.4. 雅诗兰黛
  • 9.1.5。BioBliss□, Iontera, Patchology
  • 9.1.6。FeeliGreen (Feeligold)
  • 9.2. 药物输送
    • 9.2.1. 用于药物递送的离子电渗疗法
    • 9.2.2 . 用于离子电渗疗法的药物研究
    • 9.2.3. 药物输送贴片的商业活动
    • 9.2.4. FeeliGreen (Feelicare)
    • 9.2.5。首尔国立大学:通过皮肤贴片治疗帕金森病
  • 9.3. 反向离子电渗疗法
    • 9.3.1. 反向离子导入
    • 9.3.2. 示例:GlucoWatch
    • 9.3.3. Nemaura Medical:sugarBEAT
  • 9.4. 市场预测和结论
    • 9.4.1. 通过皮肤贴片进行离子导入:市场数据(20 10-2019)
    • 9.4.2. 通过皮肤贴片进行离子导入:市场预测(2020-2030)
    • 9.4.3. 主要结论:离子电渗疗法

10。汗液传感:汗液率和生物标志物

  • 10.1.1. 简介 - 汗液感应
  • 10.2. 测量出汗率
    • 10.2.1. 技术概述 - 测量生物阻抗
    • 10.2.2. 技术概述 - 皮肤电反应 (GSR)
    • 10.2.3. 技术概览 - 汗液湿度传感器
    • 10.2.4. GE全球研究
  • 10.3. 检测汗液中的生物标志物
    • 10.3.1. 技术概述 - 汗液中的化学传感
    • 10.3.2. 汗液与其他分析物来源
    • 10.3.3. 汗液中的分析物
    • 10.3.4. 使用化学传感器进行诊断
    • 10.3.5。使用生物传感器监测血液胆固醇
    • 10.3.6。迈向可穿戴胆固醇监测
    • 10.3.7。示例:汗液酒精检测
    • 10.3.8。运动员乳酸监测
    • 10.3.9。传统的乳酸监测仪
    • 10.3.10。微针分析组织间液中的乳酸
    • 10.3.11。越来越便携的牛和人结核病诊断
    • 10.3.12。囊性纤维化的可穿戴诊断测试
    • 10.3.13。技术概述:化学传感
    • 10.3.14。百联
    • 10.3.15。肯岑
    • 10.3.16。米洛传感器
    • 10.3.17。帕克/加州大学圣地亚哥分校
    • 10.3.18。斯坦福大学和加州大学伯克利分校
    • 10.3.19。森西奥
    • 10.3.20。Epicore生物系统公司
    • 10.3.21。外泌系统(关闭)
    • 10.3.22。主要结论:汗液感应

11。使用皮肤贴片进行伤口监测和治疗

  • 11.1. 伤口监测
  • 11.2. 伤口监测:KAUST
  • 11.3. 伤口监测:普渡大学
  • 11.4. 伤口监测:塔夫茨大学
  • 11.5。伤口监测:廷德尔国立研究所
  • 11.6. 伤口监测:加州大学伯克利分校
  • 11.7. 伤口监测:UCSD
  • 11.8。伤口监测:VTT
  • 11.9。伤口Treatm ENT

12。带有皮肤贴片的运动感应

  • 12.1.1. 简介 - 通过皮肤贴片监测运动
  • 12.1.2. 感应运动的不同模式
  • 12.2. 使用惯性测量单元测量运动
    • 1 2.2.1. 介绍 - 惯性测量单元
    • 12.2.2. 使用 IMU 测量运动:示例
    • 12.2.3. 价值炼和参与者示例
    • 12.2.4. 皮肤贴片中的 IMU
  • 12.3. 使用共形传感器测量运动 < ul>
  • 12.3.1. 介绍 - 测量运动的替代方案
  • 12.3.2. 技术概述 - 电阻/压阻传感
  • 12.3.3. 参与者和行业动态
  • 12.3.4. 佩拉泰克
  • 12.3.5。量子隧穿复合材料:QTCR
  • 12.3.6。QTCR 与 FSR□ 与压敏电阻器?
  • 12.3.7。Bebop 传感器
  • 12.3.8。白尼莎
  • 12.3.9。技术概览 - 电容式传感
  • 12.3.10。派克汉尼汾
  • 12.3.11。拉伸感
  • 12.3. 12.飞跃科技
  • 12.3.13。技术概览 - 压电传感
  • 12.4. 应用实例
    • 12.4.1. 皮肤贴片运动传感器的应用
    • 12.4.2. 案例研究 - 脑震荡检测
    • 12.4.3. X2生物系统
    • 12.4.4. 美国军用头部外伤贴片/PARC
    • 12.4.5。主要结论:运动传感

    13。皮肤贴片作为植入物的通信网关

    • 13.1.1. 与植入物的交流
    • 13.2 . 糖尿病管理示例
      • 13.2.1. 感觉学
      • 13.2.2. Senseonics:皮肤贴片的作用
    • 13.3. 生物电子医学中的例子
      • 13.3.1. 带有生物电子医学植入物的皮肤贴片
      • 13.3.2. 神经恢复技术
      • 13.3.3. Stimwave:自由 SCS
      • 13.3.4. SPR 疗法:Sprint PNS
      • 13.3.5。生化:StimRouter
    • 13.4. 其他例子
      • 13.4.1. Proteus 数字健康
      • 13.4. 2. GraftWorx

    14。皮肤贴片的其他应用

    • 14.1. 压疮预防
      • 14.1.1. Leaf Healthcare(史密斯和侄子)
    • 14.2. 膀胱容积感应(可穿戴超声波)
      • 14.2.1. 新扫瞄仪
      • 14.2.2. 三重 W - D 免费
    • 14.3. 其他保健和医疗应用
      • 14.3.1. 声呼吸率(Acurable、Masimo 等)
      • 14.3.2. 紫外线防护
      • 14.3.3. MC10 & 欧莱雅:Wisp
      • 14.3.4. 救治:压力管理
    • 14.4. 其他
      • 14.4.1. EOG - 带有皮肤贴片的眼动追踪

    15。市场预测

    • 15.1.1. 预测细节和假设
    • 15.2. 糖尿病管理预测
      • 15.2.1. 皮肤斑块和糖尿病:预测摘要
      • 15.2.2. 概述:2020 年 CGM 市场份额和参与者
      • 15.2.3. 糖尿病管理的重点转移,历史数据:2010-2020
      • 15.2.4. 历史市场数据:葡萄糖试纸
      • 15.2.5。历史市场数据:CGM
      • 15.2.6。历史市场数据:胰岛素泵
      • 15.2.7。历史市场数据:贴片泵
      • 15.2.8。糖尿病和CGM 的定量预测
      • 15.2.9。构建自上而下的预测场景
      • 15.2.10。市场数据和预测:葡萄糖试纸
      • 15.2.11。市场数据及预测:CGM(销量)
      • 15.2.12。市场数据和预测:胰岛素泵(收入) <我>15.2.13。市场数据及预测:胰岛素泵(销量)
      • 15.2.14。完整数据集:糖尿病管理中的皮肤斑块,2010-2020(历史)和 2021-2031(预测)
      • 15.2.15。完整数据集:糖尿病管理市场,2010-2020(历史)和 2021-2031(预测)
    • 15.3. 心血管监测预测
      • 15.3.1. 市场概况和预测
      • 15.3.2. 心脏监测皮肤贴片:历史数据:2010-2020
      • 15.3.3. 心脏监测皮肤补丁:市场预测
      • 15.3.4. 带表的完整数据集:2010-2019(历史)和 2020-2030(预测)
    • 15.4. 一般患者监测预测
      • 15.4.1. 历史市场数据,2010-2020
      • 15.4.2. 2021-2031 年市场预测
      • 15.4.3. 无线住院监护的市场数据和预测
      • 15.4.4. 无线门诊监测的市场数据和预测
      • 15.4.5。胎心率监测预测
    • 15.5。电刺激预测
      • 15.5.1. 通过皮肤贴片进行电刺激:市场数据(2010-2019)
      • 15.5.2. 通过皮肤贴片进行电刺激:市场预测(2021-2031)
    • 15.6。温度传感预测
      • 15 .6.1。温度传感:市场数据和预测
    • 15.7。离子电渗疗法预测
      • 15.7.1. 通过皮肤贴片进行离子导入:市场数据(2010-2019)
      • 15.7.2. 通过皮肤贴片进行离子导入:市场预测(2020-2030)
    • 15.8。所有行业的完整历史和预测数据表
      • 15.8.1。按皮肤贴片产品类型划分的收入(/百万美元)
      • 15.8.2. 按皮肤贴片产品类型定价(/美元)
      • 15.8.3. 按皮肤贴片产品类型划分的收入(/百万美元)

    16。121 款电子皮肤贴片产品和播放器列表

    • 16.1. 公司简介和采访清单
  • 目录
    Product Code: ISBN 9781913899523

    Title:
    Electronic Skin Patches 2021-2031
    The most comprehensive assessment on the commercialization of flexible, wearable, smart skin patches.

    "The market for electronic skin patches will be worth over $30bn per year by 2031."

    This report characterizes the markets, technologies and players in electronic skin patches. With coverage across 28 application areas and 127 companies, historic market data from 2010-2020 and market forecasts from 2021 to 2031, it is the most comprehensive study compiled for this product area. It reveals significant opportunity, with the sector passing $10bn in annual revenue from electronic skin patches in 2021, and a forecast for this to grow to over $30bn by 2031.

    Skin patches are wearable products attached to the skin. The electronic element involves the integration of electronic functionality such as sensors, actuators, processors and communication, allowing products to become connected and "smart". In many ways, skin patches act as the ultimate wearable electronic devices, augmenting the wearer with minimal encumbrance and maximum comfort. As such, interest in electronic skin patches soared as a by-product of the significant hype and market growth around "wearables" starting in 2014.

    However, several product types within the sector transcend this hype. Several skin patch product areas, particularly in diabetes management, cardiovascular monitoring, and other vital sign monitoring, have superseded incumbent options in established markets to create billions of dollars of new revenue each year for the companies at the forefront of this wave. However, success is not ubiquitous; each market discussed within this report sits within a unique ecosystem, with different players, drivers, limitations and history to build on.

    As such, the report looks at each of the application areas for electronic skin patches in turn, discussing the relevant technology, product types, competitive landscape, industry players, pricing, historic revenue, and market forecasts. The areas covered include diabetes management, cardiovascular monitoring devices (MCT, Holter monitors, Event monitors, and related products), medical patient monitoring (both inpatient and outpatient), motion sensing, temperature sensing, drug and cosmetic delivery patches, electrical stimulation devices, emerging options towards smart wound care and more. The report contains historic revenue data for each of the product sectors studied back to 2010, including data by company for the larger sectors. The report also contains detailed market forecasting over 10 years for each of the key application areas.

    28 application areas discussed within the report
    Source IDTechEx

    The product category of "electronic skin patches" conceals a significant amount of diversity. Whilst many people may imagine skin patches to be thin, highly conformable devices that sit close to the skin, the reality is that many of the most successful products today are still relatively bulky devices. As such, each chapter within the report also contains a discussion of technology areas relevant to the future development of smart patches, particularly around areas such as flexible, stretchable and conformal electronic components. Development of these technologies will not only enable more products to be deployed as skin patches but will also improve the form factor of electronic skin patches that already exist. This is also covered extensively in IDTechEx's other work in topics such as flexible electronic, stretchable electronics, thin and flexible batteries, smart textiles and other related topics.

    The research behind the report has been compiled over several years by IDTechEx analysts. It follows existing coverage of areas such as wearable technology, flexible electronics, stretchable and conformal electronics, electronic textiles, advanced wound care, bioelectronics, sensors and other medical devices. The methodology involved a mixture of primary and secondary research, with a key focus on speaking to executives and scientists from companies developing commercial electronic skin patches. As such, the report compiles case studies of 127 companies and projects, each updated over time and compared within their appropriate product ecosystems.

    Source IDTechEx

    Unique position and experience behind the report

    IDTechEx is afforded a particularly unique position in covering this topic. The experienced analyst team builds on decades of experience covering emerging technology markets, and particularly areas, such as flexible electronics, which are central to electronic skin patches. This has been historically supported by IDTechEx's parallel activities in organising the leading industry conferences and exhibitions covering flexible and wearable electronics, as well as smaller events covering specific innovation trends such as for healthcare sensors or related areas. IDTechEx has the unique ability to curate a network in these topic areas, facilitating the reporting in this report.

    Analyst access from IDTechEx

    All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

    TABLE OF CONTENTS

    1. EXECUTIVE SUMMARY

    • 1.1. Executive introduction: Electronic skin patches
    • 1.2. Application overview
    • 1.3. Applications, market sizes and outlook
    • 1.4. The diabetes management ecosystem
    • 1.5. CGM leads the way
    • 1.6. Insulin pumps and patch pumps
    • 1.7. The outlook for diabetes management
    • 1.8. Monitoring the heart via skin patches
    • 1.9. Players and product types in cardiac monitoring
    • 1.10. Cardiac monitoring skin patches: Historic data: 2010-2020
    • 1.11. Cardiac monitoring skin patches: Market forecasts
    • 1.12. Application potential for general purpose devices
    • 1.13. Historic market data, 2010-2020
    • 1.14. Market forecasts, 2021-2031
    • 1.15. Skin patch temperature sensing: Use cases across 13 case studies
    • 1.16. Key conclusions: Temperature sensing skin patches
    • 1.17. Electrical stimulation product types
    • 1.18. Skin patches in bioelectronic medicine
    • 1.19. Electrical stimulation via skin patches: Market data (2010-2019)
    • 1.20. Electrical stimulation via skin patches: Market forecast (2021-2031)
    • 1.21. Iontophoresis via skin patches: Market data (2010-2019)
    • 1.22. Iontophoresis via skin patches: Market forecast (2020-2030)
    • 1.23. Key conclusions: Iontophoresis
    • 1.24. Examples of players from case studies

    2. INTRODUCTION

    • 2.1.1. The case for skin patches: Augmenting the human body
    • 2.1.2. The case for skin patches: Improving device form factor
    • 2.1.3. Definitions and exclusions
    • 2.1.4. History of skin patches
    • 2.1.5. Applications, market sizes and outlook
    • 2.1.6. Reimbursement drives commercial business models
    • 2.1.7. Patents: Total active patents by assignee
    • 2.1.8. Patents over time
    • 2.1.9. Patents: Active and strong patents by assignee
    • 2.1.10. Context: Wearables hype
    • 2.1.11. Glossary
    • 2.1.12. Glossary (continued)
    • 2.2. Application overview
      • 2.2.1. Skin patches competing with established products
      • 2.2.2. New market creation around skin patches
      • 2.2.3. Section contents

    3. DIABETES MANAGEMENT VIA SKIN PATCHES

    • 3.1.1. Background: Introduction to diabetes
    • 3.1.2. The prevalence of diabetes
    • 3.1.3. Background: Diabetes on the rise
    • 3.1.4. Background: The cost of diabetes
    • 3.1.5. Background: The diabetes management process
    • 3.1.6. Diabetes management ecosystem
    • 3.1.7. Diabetes management device roadmap: Summary
    • 3.1.8. Diabetes management device roadmap: Sensors
    • 3.1.9. Coverage in this report
    • 3.2. Continuous glucose monitoring (CGM)
      • 3.2.1. The case for continuous glucose monitoring (CGM)
      • 3.2.2. Anatomy of a typical CGM device
      • 3.2.3. CGM is deployed via skin patches
      • 3.2.4. Comparison metrics for CGM devices
      • 3.2.5. Example: Accuracy of CGM devices over time
      • 3.2.6. CGM: Technology
      • 3.2.7. CGM sensor chemistry
      • 3.2.8. Sensor filament structure
    • 3.3. CGM: Overview of key players
      • 3.3.1. CGM: Overview of key players
      • 3.3.2. Abbott Laboratories: Introduction
      • 3.3.3. Abbott Laboratories: CGM business
      • 3.3.4. Abbott: Freestyle® Libre
      • 3.3.5. Abbott: "Wired enzyme"
      • 3.3.6. Abbott: Device and sensor structure
      • 3.3.7. Dexcom: Introduction
      • 3.3.8. Dexcom: CGM products
      • 3.3.9. Dexcom: Sensor structure
      • 3.3.10. Medtronic: Introduction
      • 3.3.11. Medtronic: Diabetes & CGM business
      • 3.3.12. Medtronic: Sensor structure
      • 3.3.13. Medtronic: Towards closed loop
      • 3.3.14. Medtronic: Patents in CGM
      • 3.3.15. Roche: Overview
      • 3.3.16. Roche: Patents in CGM
      • 3.3.17. Senseonics
      • 3.3.18. Ascensia & POCTech
      • 3.3.19. Medtrum
      • 3.3.20. Medtrum: CGM devices & insulin pumps
      • 3.3.21. Medtrum: Sensing technology
      • 3.3.22. Medtrum: Specific development steps towards the artificial pancreas
      • 3.3.23. Medtrum
      • 3.3.24. AgaMatrix & WaveForm Technologies
      • 3.3.25. Infinovo
      • 3.3.26. PKVitality
      • 3.3.27. Sano
      • 3.3.28. Verily / Google: Contact lenses
    • 3.4. Non-invasive glucose monitoring
      • 3.4.1. Background: Glucose in the body
      • 3.4.2. Assessment of different analytes for glucose monitoring
      • 3.4.3. Key criteria for assessing accuracy
      • 3.4.4. In Context: FDA requirements
      • 3.4.5. Approaches for non-invasive glucose monitoring
      • 3.4.6. Companies Using Each Technique
      • 3.4.7. Companies Using Each Technique (Other Fluids)
      • 3.4.8. When will non-invasive glucose monitoring be commercialised?
      • 3.4.9. Notable Quotes on Non-Invasive Glucose Monitoring
    • 3.5. Insulin delivery
      • 3.5.1. Insulin delivery: Introduction
      • 3.5.2. Diabetes management device roadmap: Insulin delivery
      • 3.5.3. Insulin pumps: Introduction
      • 3.5.4. Insulin pumps currently available
      • 3.5.5. Insulin pump breakdown
      • 3.5.6. Insulin patch pumps
      • 3.5.7. Example: Patch pumps at Medtronic?
      • 3.5.8. Pricing models for patch pumps vs traditional options
      • 3.5.9. Insulin pump market
      • 3.5.10. Insulin pump players and market share
      • 3.5.11. Markets: Patch pumps vs traditional infusion pumps
      • 3.5.12. Comparing insulin pumps and CGM
      • 3.5.13. Outlook for insulin pumps
    • 3.6. Linking insulin pumps and CGM: Towards closed loop and the artificial pancreas
      • 3.6.1. Today: Hybrid closed loop systems
      • 3.6.2. Example: Progress from Medtronic
      • 3.6.3. The objective: Closing the feedback loop
      • 3.6.4. Examples and partnerships
      • 3.6.5. Example: DiabeLoop
      • 3.6.6. Medtrum: Efforts towards the artificial pancreas
    • 3.7. Market data: Historic & forecasts
      • 3.7.1. Skin patches and diabetes: Forecast summary
      • 3.7.2. Overview: CGM market share and players in 2020
      • 3.7.3. A shifting focus in diabetes management, Historic data: 2010-2020
      • 3.7.4. Test strip business in decline
      • 3.7.5. The growth of CGM accelerates
      • 3.7.6. The insulin pump market
      • 3.7.7. Markets: Patch pumps vs traditional infusion pumps
      • 3.7.8. Quantitative forecasts for diabetes and CGM
      • 3.7.9. Building a top-down forecast scenario
      • 3.7.10. CGM: Market forecast (revenue)
      • 3.7.11. CGM: Market forecast (sales volumes)
      • 3.7.12. Insulin pumps: Market forecast (revenue)
      • 3.7.13. Insulin pumps: Market forecast (sales volumes)
      • 3.7.14. Full datasets: Skin patches in diabetes management, 2010-2020 (historic) & 2021-2031 (forecast)
      • 3.7.15. Full datasets: Diabetes management markets, 2010-2020 (historic) & 2021-2031 (forecast)

    4. GENERAL PATIENT MONITORING: VITAL SIGNS AND RELATED METRICS

    • 4.1. Introduction
      • 4.1.1. Introduction
      • 4.1.2. Drivers and requirements for skin patches
      • 4.1.3. Application potential for general purpose devices
      • 4.1.4. Deployment challenges for general monitoring devices
      • 4.1.5. Evolving market dynamics over time
      • 4.1.6. General monitoring needs an infrastructure that only the larger players can provide
      • 4.1.7. Historic market data, 2010-2020
      • 4.1.8. Market forecasts, 2021-2031
    • 4.2. Inpatient monitoring
      • 4.2.1. Traditional inpatient monitoring
      • 4.2.2. The case for removing the wires
      • 4.2.3. Emerging skin patch options
      • 4.2.4. Players and approaches
      • 4.2.5. Philips
      • 4.2.6. BioIntelliSense
      • 4.2.7. VivaLNK
      • 4.2.8. The Surgical Company (formerly Sensium)
      • 4.2.9. VitalConnect
      • 4.2.10. Isansys Lifecare
      • 4.2.11. Market data and forecasts for wireless inpatient monitoring
    • 4.3. Outpatient monitoring with skin patches
      • 4.3.1. Introduction
      • 4.3.2. LifeSignals
      • 4.3.3. Samsung
      • 4.3.4. MC10
      • 4.3.5. DevInnova / Scaleo Medical
      • 4.3.6. Avanix
      • 4.3.7. Avanix - business model and target milestones
      • 4.3.8. Historic: Qualcomm Life
      • 4.3.9. Qualcomm Life / Capsule Technologies
      • 4.3.10. Market data and forecasts for wireless outpatient monitoring

    5. CARDIOVASCULAR MONITORING SKIN PATCHES

    • 5.1.1. Introduction - Cardiovascular monitoring via wearable devices
    • 5.1.2. Introduction - Measuring biopotential
    • 5.1.3. Technology overview - the circuitry for measuring biopotential
    • 5.1.4. Introduction - Electrocardiography (ECG, or EKG)
    • 5.1.5. Devices for cardiac monitoring
    • 5.1.6. Cardiac monitoring device types - skin patches
    • 5.1.7. Companies and product types
    • 5.1.8. Technology overview - electrode properties
    • 5.1.9. Disposable Ag/AgCl electrodes
    • 5.1.10. Electrodes: Traditional approaches
    • 5.1.11. Skin patches with disposable electrodes
    • 5.1.12. Skin patches with integrated electrodes
    • 5.2. Reimbursement
      • 5.2.1. Reimbursement codes for wearable cardiac monitors
      • 5.2.2. 2021: New reimbursement structure in place
      • 5.2.3. Fallout and outlook following the 2021 code change
    • 5.3. Players
      • 5.3.1. Summaries and interviews with 20 industry players
      • 5.3.2. Philips
      • 5.3.3. BioTelemetry, Inc.
      • 5.3.4. BioTelemetry: Timeline
      • 5.3.5. iRhythm
      • 5.3.6. ScottCare
      • 5.3.7. Fukuda Denshi
      • 5.3.8. Fujita Medical Instruments
      • 5.3.9. Bittium
      • 5.3.10. Byteflies & Quad Industries
      • 5.3.11. Cardiomo
      • 5.3.12. Vivomi
      • 5.3.13. QT Medical
      • 5.3.14. SWMedical
      • 5.3.15. SWMedical - CardiNova
      • 5.3.16. Seers Technology
      • 5.3.17. Rooti
      • 5.3.18. Preventice Solutions
      • 5.3.19. Sigknow
      • 5.3.20. Borsam
      • 5.3.21. Cortrium
      • 5.3.22. Qardio
      • 5.3.23. Qardio (2)
      • 5.3.24. Holst Center: Skin patches
      • 5.3.25. Tatch
      • 5.3.26. Mezoo
      • 5.3.27. S'UIMIN
      • 5.3.28. Medtronic: SEEQ MCT (discontinued)
      • 5.3.29. LumiraDx / FitLinxx: Ampstrip (discontinued)
    • 5.4. Competition with other form factors
      • 5.4.1. Other form factors for ambulatory cardiac monitoring
      • 5.4.2. Wearable vs implantable monitoring
      • 5.4.3. Example: Medtronic (SEEQ & LINQ)
      • 5.4.4. Comparison: Chest straps
      • 5.4.5. Comparison: Apparel
      • 5.4.6. Comparison: Portable devices
      • 5.4.7. Comparison: Smartwatch optical HRM
    • 5.5. Market data and forecasts
      • 5.5.1. Market overview and forecasts
      • 5.5.2. The impact of COVID-19
      • 5.5.3. Cardiac monitoring skin patches: Historic data: 2010-2020
      • 5.5.4. Cardiac monitoring skin patches: Market forecasts
      • 5.5.5. Full dataset with table: 2010-2019 (historic) & 2020-2030 (forecast)
      • 5.5.6. Key conclusions: cardiac monitoring skin patches

    6. FOETAL HEART RATE MONITORING

    • 6.1. Foetal monitoring
    • 6.2. Monica Healthcare
    • 6.3. GE Healthcare
    • 6.4. Philips
    • 6.5. Key conclusions and market data

    7. TEMPERATURE SENSING SKIN PATCHES

    • 7.1. Introduction - Body Temperature
    • 7.2. Temperature sensing technology options
    • 7.3. Approaches and standards for medical temperature sensing
    • 7.4. Skin patches for temperature sensing
    • 7.5. Skin patch temperature sensing: Use cases across 13 case studies
    • 7.6. VivaLNK
    • 7.7. VivaLNK & Reckitt Benckiser
    • 7.8. VivaLNK: COVID-19 response
    • 7.9. BioIntelliSense
    • 7.10. Blue Spark
    • 7.11. Blue Spark & TempTraq®
    • 7.12. Life Science Technology
    • 7.13. Isansys Lifecare
    • 7.14. Raiing Medical
    • 7.15. Bonbouton
    • 7.16. CSEM
    • 7.17. Covestro
    • 7.18. Chois Technology
    • 7.19. Alternative options: Tympanic temperature sensing
    • 7.20. Key conclusions: Temperature sensing skin patches

    8. ELECTRICAL STIMULATION WITH SKIN PATCHES

    • 8.1.1. Introduction: Types of electrical stimulation
    • 8.1.2. Differentiation for electrical stimulation
    • 8.1.3. Nomenclature in electrical stimulation
    • 8.1.4. Electrical stimulation product types
    • 8.1.5. Medical vs non-medical devices
    • 8.1.6. Bioelectronic Medicine: Definition and background
    • 8.1.7. Major Forms of Bioelectronic Medicine
    • 8.1.8. The Evolution of Bioelectronic Medicine
    • 8.1.9. Skin patches in bioelectronic medicine
    • 8.2. TENS
      • 8.2.1. TENS - Introduction
      • 8.2.2. Innovative Health Solutions: NSS-2 Bridge
      • 8.2.3. BeWellConnect: MyTens
      • 8.2.4. NeuroMetrix: Quell
      • 8.2.5. Theranica: Nerivio Migra
    • 8.3. EMS / NMES / FES
      • 8.3.1. EMS, NMES and FES
      • 8.3.2. Applications of EMS / NMES
      • 8.3.3. Example: Russian Stimulation
      • 8.3.4. Example: Therapeutic settings and uses
      • 8.3.5. Properties of the stimulation (as presented with a therapeutic focus)
      • 8.3.6. First Kind Medical: geko
      • 8.3.7. Example: HiDow
      • 8.3.8. Example: HiDow
      • 8.3.9. Hivox Biotek
    • 8.4. Market data and forecasts
      • 8.4.1. Electrical stimulation via skin patches: Market data (2010-2019)
      • 8.4.2. Electrical stimulation via skin patches: Market forecast (2021-2031)

    9. IONTOPHORESIS SKIN PATCHES: COSMETICS AND DRUG DELIVERY

    • 9.1.1. Introduction - Iontophoresis
    • 9.1.2. Cosmetics
    • 9.1.3. Cosmetic skin patches
    • 9.1.4. Estée Lauder
    • 9.1.5. BioBliss™, Iontera, Patchology
    • 9.1.6. FeeliGreen (Feeligold)
    • 9.2. Drug delivery
      • 9.2.1. Iontophoresis for drug delivery
      • 9.2.2. Drugs studied for iontophoretic delivery
      • 9.2.3. Commercial activity with drug delivery patches
      • 9.2.4. FeeliGreen (Feelicare)
      • 9.2.5. Seoul National University: Parkinson's medication via skin patches
    • 9.3. Reverse iontophoresis
      • 9.3.1. Reverse Iontophoresis
      • 9.3.2. Example: GlucoWatch
      • 9.3.3. Nemaura Medical: sugarBEAT
    • 9.4. Market forecasts and conclusions
      • 9.4.1. Iontophoresis via skin patches: Market data (2010-2019)
      • 9.4.2. Iontophoresis via skin patches: Market forecast (2020-2030)
      • 9.4.3. Key conclusions: Iontophoresis

    10. SWEAT SENSING: SWEAT RATE AND BIOMARKERS

    • 10.1.1. Introduction - Sweat sensing
    • 10.2. Measuring sweat rate
      • 10.2.1. Technology overview - measuring bioimpedance
      • 10.2.2. Technology overview - Galvanic skin response (GSR)
      • 10.2.3. Technology overview - humidity sensors for sweat
      • 10.2.4. GE Global Research
    • 10.3. Sensing biomarkers in sweat
      • 10.3.1. Technology overview - chemical sensing in sweat
      • 10.3.2. Sweat vs other sources of analytes
      • 10.3.3. Analytes in sweat
      • 10.3.4. Diagnostics with chemical sensors
      • 10.3.5. Monitoring blood cholesterol using biosensors
      • 10.3.6. Towards wearable cholesterol monitoring
      • 10.3.7. Example: sweat alcohol detection
      • 10.3.8. Lactic acid monitoring for athletes
      • 10.3.9. Traditional lactic acid monitors
      • 10.3.10. Microneedles to analyse lactic acid in interstitial fluid
      • 10.3.11. Increasingly portable diagnosis of bovine and human TB
      • 10.3.12. Wearable diagnostic tests for cystic fibrosis
      • 10.3.13. Technology overview: Chemical sensing
      • 10.3.14. Biolinq
      • 10.3.15. Kenzen
      • 10.3.16. Milo Sensors
      • 10.3.17. PARC / UCSD
      • 10.3.18. Stanford and UC Berkeley
      • 10.3.19. Xsensio
      • 10.3.20. Epicore Biosystems
      • 10.3.21. Eccrine Systems (closed)
      • 10.3.22. Key conclusions: Sweat sensing

    11. WOUND MONITORING AND TREATMENT WITH SKIN PATCHES

    • 11.1. Wound Monitoring
    • 11.2. Wound Monitoring: KAUST
    • 11.3. Wound Monitoring: Purdue University
    • 11.4. Wound Monitoring: Tufts University
    • 11.5. Wound Monitoring: Tyndall National Institute
    • 11.6. Wound Monitoring: UC Berkeley
    • 11.7. Wound Monitoring: UCSD
    • 11.8. Wound Monitoring: VTT
    • 11.9. Wound Treatment

    12. MOTION SENSING WITH SKIN PATCHES

    • 12.1.1. Introduction - Monitoring motion via skin patches
    • 12.1.2. Different modes for sensing motion
    • 12.2. Measuring motion with inertial measurement units
      • 12.2.1. Introduction - Inertial measurement units
      • 12.2.2. Measuring motion with IMUs: Examples
      • 12.2.3. Value chain and examples of players
      • 12.2.4. IMUs in skin patches
    • 12.3. Measuring motion with conformal sensors
      • 12.3.1. Introduction - alternatives for measuring motion
      • 12.3.2. Technology overview - Resistive/piezoresistive sensing
      • 12.3.3. Players and industry dynamic
      • 12.3.4. Peratech
      • 12.3.5. Quantum tunnelling composite: QTC®
      • 12.3.6. QTC® vs. FSR™ vs. piezoresistor?
      • 12.3.7. Bebop Sensors
      • 12.3.8. Bainisha
      • 12.3.9. Technology overview - Capacitive sensing
      • 12.3.10. Parker Hannifin
      • 12.3.11. Stretchsense
      • 12.3.12. LEAP Technology
      • 12.3.13. Technology overview - Piezoelectric sensing
    • 12.4. Application examples
      • 12.4.1. Applications for skin patch motion sensors
      • 12.4.2. Case study - Concussion detection
      • 12.4.3. X2 Biosystems
      • 12.4.4. US Military head trauma patch / PARC
      • 12.4.5. Key conclusions: Motion sensing

    13. SKIN PATCHES AS A COMMUNICATION GATEWAY TO IMPLANTS

    • 13.1.1. Communication with implants
    • 13.2. Examples in diabetes management
      • 13.2.1. Senseonics
      • 13.2.2. Senseonics: The role of the skin patch
    • 13.3. Examples in bioelectronic medicine
      • 13.3.1. Skin patches with bioelectronic medicine implants
      • 13.3.2. NeuroRecovery Technologies
      • 13.3.3. Stimwave: Freedom SCS
      • 13.3.4. SPR Therapeutics: Sprint PNS
      • 13.3.5. Bioness: StimRouter
    • 13.4. Other examples
      • 13.4.1. Proteus Digital Health
      • 13.4.2. GraftWorx

    14. OTHER APPLICATIONS OF SKIN PATCHES

    • 14.1. Pressure ulcer prevention
      • 14.1.1. Leaf Healthcare (Smith & Nephew)
    • 14.2. Bladder volume sensing (wearable ultrasound)
      • 14.2.1. Novioscan
      • 14.2.2. Triple W - D Free
    • 14.3. Other healthcare & medical applications
      • 14.3.1. Acoustic respiration rate (Acurable, Masimo, etc.)
      • 14.3.2. UV protection
      • 14.3.3. MC10 & L'Oréal: Wisp
      • 14.3.4. Lief Therapeutics: Stress Management
    • 14.4. Others
      • 14.4.1. EOG - eye tracking with skin patches

    15. MARKET FORECASTS

    • 15.1.1. Forecast details and assumptions
    • 15.2. Diabetes management forecasts
      • 15.2.1. Skin patches and diabetes: Forecast summary
      • 15.2.2. Overview: CGM market share and players in 2020
      • 15.2.3. A shifting focus in diabetes management, Historic data: 2010-2020
      • 15.2.4. Historic market data: Glucose test strips
      • 15.2.5. Historic market data: CGM
      • 15.2.6. Historic market data: Insulin pumps
      • 15.2.7. Historic market data: Patch pumps
      • 15.2.8. Quantitative forecasts for diabetes and CGM
      • 15.2.9. Building a top-down forecast scenario
      • 15.2.10. Market data and forecast: Glucose test strips
      • 15.2.11. Market data and forecast: CGM (sales volume)
      • 15.2.12. Market data and forecast: Insulin pumps (revenue)
      • 15.2.13. Market data and forecast: Insulin pumps (sales volume)
      • 15.2.14. Full datasets: Skin patches in diabetes management, 2010-2020 (historic) & 2021-2031 (forecast)
      • 15.2.15. Full datasets: Diabetes management markets, 2010-2020 (historic) & 2021-2031 (forecast)
    • 15.3. Cardiovascular monitoring forecasts
      • 15.3.1. Market overview and forecasts
      • 15.3.2. Cardiac monitoring skin patches: Historic data: 2010-2020
      • 15.3.3. Cardiac monitoring skin patches: Market forecasts
      • 15.3.4. Full dataset with table: 2010-2019 (historic) & 2020-2030 (forecast)
    • 15.4. General patient monitoring forecasts
      • 15.4.1. Historic market data, 2010-2020
      • 15.4.2. Market forecasts, 2021-2031
      • 15.4.3. Market data and forecasts for wireless inpatient monitoring
      • 15.4.4. Market data and forecasts for wireless outpatient monitoring
      • 15.4.5. Foetal heart rate monitor forecasts
    • 15.5. Electrical stimulation forecasts
      • 15.5.1. Electrical stimulation via skin patches: Market data (2010-2019)
      • 15.5.2. Electrical stimulation via skin patches: Market forecast (2021-2031)
    • 15.6. Temperature sensing forecasts
      • 15.6.1. Temperature sensing: Market data and forecasts
    • 15.7. Iontophoresis forecasts
      • 15.7.1. Iontophoresis via skin patches: Market data (2010-2019)
      • 15.7.2. Iontophoresis via skin patches: Market forecast (2020-2030)
    • 15.8. Full historic and forecast data tables for all sectors
      • 15.8.1. Revenue by skin patch product type (/USD millions)
      • 15.8.2. Pricing by skin patch product type (/USD)
      • 15.8.3. Revenue by skin patch product type (/USD millions)

    16. LIST OF 121 ELECTRONIC SKIN PATCH PRODUCTS AND PLAYERS

    • 16.1. List of company profiles and interviews