NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

纯电动汽车 前往1000英里(1600公里)的路线, 2021-2041年

Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041

出版商 IDTechEx Ltd. 商品编码 1009395
出版日期 内容资讯 英文 297 Slides
商品交期: 最快1-2个工作天内
价格
纯电动汽车 前往1000英里(1600公里)的路线, 2021-2041年 Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041
出版日期: 2021年06月07日内容资讯: 英文 297 Slides
简介

标题
2021-2041 年实现 1000 英里(1600 公里)纯电动汽车的路线
材料机会,简化,轻量化,3-5个光伏,
固态电池、零排放增程器、超级电容器、宽带隙、
石墨烯、铝、太阳追踪、热泵。

现在大家都在谈论快速充电,但将范围扩大一倍然后三倍是地震。世界通过消除基础设施来解决问题。IDTechEx 的 285 页报告 "通往 1000 英里(1600 公里)电池电动汽车的路线 2021-2041" 对此进行了详细说明。

该报告回答了以下问题:

  • 为什么范围改进是一个持续的主要汽车战场?
  • 制造续航里程为 1000 英里(1600 公里)且价格合理的汽车的最佳方法是什么?何时实现?
  • 2021 年至 2041 年有多少汽车的最佳续航里程?
  • 每种技术的贡献百分比是多少?谁领先?
  • 有关新兴简化、轻量化、太阳能车身、新组件、电池的详细信息?
  • 在 2021-2041 年实现这些范围的技术路线图是什么?
  • 目前以不同方式实现最佳范围。我们如何将它们结合起来?
  • 研究管道中还会出现哪些其他选择。什么时候,从谁那里?
  • 对固态电池的看法。批判性地比较和预测?
  • 十年来锂离子电池格式、软件、化学和成本的巨大改进。细节和时间?
  • 超级电容器、多功能复合材料、两个零排放增程器选项怎么样?
  • 评估了 30 家汽车公司的 30 种不同方法的经验教训?

考虑到过度乐觀的历史,IDTechEx 严重低估了许多承诺,但它预测对范围的需求会增强,给出了很多原因,并在这方面取得了巨大进展。瞭解支持远程的技术如何带来其他乐趣。太阳能车身让温和的用户无需使用充电站即可出行,并提供首个 "回家" 功能。如果您耗尽电池电量,您只需等待,车身就会为汽车充电,足以连接充电器。轻量化有助于加速和降低成本。没有理由购买需要频繁充电的汽车的日子即将到来。

由全球多语种博士级 IDTechEx 分析师研究,独特的 285 页 IDTechEx 报告 "通往 1000 英里(1600 公里)电池电动汽车 2021-2041 的路线" 以执行摘要和结论开头。在这里,您可以看到增加最大航程的众多原因、现有和计划中的使能技术。详细的信息图显示了趋势、成就、研究管道以及 2021-2041 年路线图。看看什么时候可以广泛使用给定的长续航里程以及配备它们的汽车的百分比。量化是广泛可用范围的四个主要贡献者,到 2031 年达到 760 英里,比今天增加了惊人的 2.4 倍。IDTechEx 计算因考虑到开发商和原始设备制造商过去的过度承诺以及对技术和规模化挑战以及未来解决方案的深入分析而被打折扣。例如,与普遍的理解相反,未来十年主要不是关于固态电池,尽管他们在 2031-2041 年的预测和路线图中提出了强有力的数据,以扩大范围。

第 2 章介绍涉及永续汽车、相关智慧城市问题、地缘政治影响、引入增程技术的迭代方法。细节的一个合理起点是特斯拉,这是世界上最有价值的汽车公司,因为它主要是通过提供最长的续航里程和专注于纯电动汽车来实现这一目标的。第 3 章 "特斯拉整体方法" 描述了它如何通过许多小东西实现续航里程,例如消除电纜、更高效的电机、低阻力系数、最好的电池。看看除了那些巨大的铝压铸件之外,它将如何通过大规模简化走得更远。阅读它关于如何设计电机的建议。

然后是关于新兴技术的章节,其中包含许多新示例。第 4 章是关于简化和轻量化以增加范围。见具有集成电力电子的轮毂电机和电桥电机、升压收缩电纜和电机、结构储能、模内、3D、透明和可编辑的电子和电气、合并组件、新的电池冷却成果、多功能复合材料。这是包括Rivian、大众集团和其他创新者在内的20年觀点。报告开头的详细行话和公司简介对此提供了支持。

第 5 章涉及范围增加的太阳能汽车。随著现代、特斯拉、丰田、大众集团和其他巨头以及销售太阳能汽车的初创公司的重大举措,这种情况变得严重,而不仅仅是做梦。Sono Motors 是如何通过强调全太阳能获得超过 13,000 个订单的?薄膜包装或承重等多种太阳能格式都经过严格评估,并比较了现在和未来的路线图和优势,甚至是展开式、太阳跟踪和超高效版本。第 6 章通过许多实际例子深入瞭解化学,包括汽车上的单晶矽、CIGS 和 GaAs、比较图表、可编辑、多结和其他选项,甚至超材料增强和从未插入的太阳能汽车的比较。

第 7 章的 26 页深入研究了电池和超级电容器的增加范围。这是结构电池、模块消除、锂离子电池的潜在破坏者量化和批评,质疑汽车 2024-6 承诺的固态汽车电池。查看未来通过化学提高能量密度的学术数据,然后查看 IDTechEx每年对商业可用能量密度的预测。第 8 章介绍了未来热管理的范围增加。第 9 章给出了 20 个公司简介,每个简介都附有 SWOT 分析。这侧重于他们为扩大汽车续航里程所做的工作。

来自 IDTechEx 的分析师访问

购买所有报告都包括与专家分析师最多 30 分钟的电话时间,他将帮助您将报告中的关键发现与您要解决的业务问题联系起来。这需要在购买报告后的三个月内使用。

目录

1. 执行摘要和结论

< ul>
  • 1.1. 本报告的目的
  • 1.2. 比赛开始了。为什么?
  • 1.3. 主要结论:一般
  • 1.4. 主要结论:长期技术选择
  • 1.5. 通过收集外部能量获得更多能量/更远距离的途径
  • 1.6. 通过零排放范围扩展器获得更多能量/更长距离的路线
  • 1.7. 通过新组件获得更多能量/更长距离的路线
  • 1.8. 通过车辆设计和材料获得更多能量/更长距离的途径
  • 1.9. 2021-2041 年长距离纯电动汽车的市场预测和技术时间表
    • 1.9.1. 2021-2041 年广泛采用的新范围扩展技术选项
    • 1.9.2. 几家厂商量产EPA/WLTP长续航BEV汽车时 2021-2041
    • 1.9.3. 可编辑电子产品的商业化时间表 2020-2041
    • 1.9.4. 钙钛矿光伏应用路线图
  • 1.10. 包括特斯拉在内的长续航高档纯电动汽车的市场预测
    • 1.10.1. 2021年至2041年全球 500 英里和 1000 英里范围内每年销售的远程车辆数量占所有汽车的百分比
    • 1.10.2. 2041 年,包括汽车在内的所有市场的全球光伏技术份额为 10 亿

    2. 简介

    • 2.1. 永动机
    • 2.2. 应对炙手可热的城市甜甜圈
    • 2.3. 主要地缘政治影响
    • 2.4. 全球差异
    • 2.5. 不 - 不是燃料电池
    • 2.6. 趋向于更大更耗电的汽车
    • 2.7. 现在进展
    • 2.8. 降低复杂性
    • 2.9. 增加范围意味著限制零件的增加
    • 2.10. 迭代改进
    • 2.11. 太阳能非常强大
    • 2.12. 太阳能汽车专利
    • 2.13. 新电池材料增加续航里程

    3. 特斯拉整体方案

    • 3.1. Overvie w ^
    • 3.2. 特斯拉整体方法
    • 3.3. 特斯拉结构电池和下一个化学和工艺
    • 3.4. 定制的电池化学成分
    • 3.5. 大型压铸大大简化了特斯拉 Model 3 和 Y
    • 3.6. 特斯拉自动驾驶简化——无雷达或激光雷达
    • 3.7. 特斯拉电机设计 - 性能与范围

    4. 简化、高效、轻量化以增加范围

    • 4.1. 概述
    • 4.2. 改进和集成电机以增加范围
      • 4.2.1. eAxles 集成了许多组件
      • 4.2.2. 与电机集成的控制器
      • 4.2.3. 轮毂电机系统更换了许多零件
      • 4.2.4. 更少的电机冷却增加了范围
      • 4.2.5. 电压增加可改善范围
      • 4.3. 热管理可以增加范围
      • 4.4. 合并空调压缩机和电机
      • 4.5。电力电纜减重:铝石墨烯、高电压、意图、问题
      • 4.6. 用于简化和轻量化的超材料和金属图案化
      • 4.7. 多功能复合材料
      • 4.8. 结构电子
      • 4.9. 自修复复合材料部件的途径
      • 4.10. 3D 电子、电气、光学、磁学
        • 4.10.1. 3D 打印、模内结构电子与贸易;
        • 4.10.2. 可编辑的电子和电气智能材料
      • 4.11. 透明电子产品
        • 4.11.1. 概述
        • 4.11.2. 汽车中的透明和半透明材料如何增加续航里程等等
        • 4.11.3. RadarGlass□
        • 4.11.4. SmartMesh□ 透明加热器包裹增加范围 6%
        • 4.11.5. 结论
      • 4.12. 结构电池和超级电容器

      5. 增加续航里程的太阳能汽车

      • 5.1. 基本
        • 5.1.1. 定义和历史
        • 5.1.2. 太阳能汽车车身增加的里程数
        • 5.1.3. 基准测试
      • 5.2. 特斯拉太阳能 Cyber□□truck 和替代品
      • 5.3. 主流太阳能汽车和汽车类车辆
        • 5.3.1. Aptera solar car
        • 5.3.2. Economia Pakistan
        • 5.3.3. Fisker USA
        • 5.3.4. Fraunhofer ISE Germany
        • 5.3.5. Hyundai-Kia Korea
        • 5.3.6. Karma USA no longer
        • 5.3.7. Lightyear Netherlands
        • 5.3.8. Manipal IT India
        • 5.3.9. Sono Motors Germany
        • 5.3.10. Toyota Japan
        • 5.3.11. Stella Lux, Stella Era, Stella Vie Netherlands
      • 5.4. 结论

      6. 光伏汽车技术

      • 6.1. 新的几何形状可以大大增加射程
      • 6.2. 化学的选择
      • 6.3. 透明光伏电池的几何形状
      • 6.4. 效率和负担能力
      • 6.5. 卫星上的东西后来出现在汽车上
      • 6.6. 矽以外的单结光伏选项
      • 6.7. 车辆上的 scSi 光伏
      • 6.8. 车辆上的 CIGS 光伏
      • 6.9. 太阳能赛车手展示未来 - 三重连接 III-V,侧面太阳能
      • 6.10. 汽车上的砷化镓光伏
      • 6.11. 领先的太阳能汽车规格:Sono、Lightyear 和 Toyota 的研究
      • 6.12. 汽车多结太阳能的潜力
      • 6.13. 光伏进步成为油漆
      • 6.14. 正在寻求的材料问题和机会
        • 6.14.1. 概述
        • 6.14.2. CIGS
        • 6.14.3. 钙钛矿光伏覆盖层和透明薄膜
        • 6.14.4. III-V材料
        • 6.14.5. 超材料促进光伏冷却并捕获越来越大的范围
        • 6.14.6. 汽车中的 EIEV 技术示例

      7. 电池和超级电容器提高范围

      • 7.1. 新几何形状可以大大增加射程
      • 7.2. 电池芯改进路线图
      • 7.3. 锂离子电池的潜在破坏者
      • 7.4. 提高能量密度的学术数据
      • 7.5. 提高 BEV 电池能量密度
      • 7.6. 提高电动汽车电池比能量
      • 7.7. 推断能量密度和比能的改进
      • 7.8. 提高细胞能量密度和比能量
      • 7.9. 原型和有针对性的改进电池能量密度和比能量
      • 7.10. 关于提高细胞能量密度的评论
      • 7.11. 示例:哈佛大学声称在 2021 年取得突破
      • 7.12. IDTe chEx 计算
      • 7.13. IDTechEx 能量密度计算 - 按阴极
      • 7.14. 矽的能量密度改进
      • 7.15. 下一代阴极
      • 7.16. 提高能量密度的电池设计
      • 7.17. 使用 "传统" 电极可以达到多高?
      • 7.18. 下一代材料能走多远?
      • 7.19. 锂离子能量密度提升前景探讨
      • 7.20. 锂离子能量密度的时间表和展望
      • 7.21. 许多声称的进步 -三星和 KIST 的例子
      • 7.22. 结束语

      8. 温度和热管理对范围的影响

      • 8.1. 范围计算
      • 8.2. 环境温度和气候控制的影响
      • 8.3. 环境温度和气候控制的影响
      • 8.4. 与环境温度的模型比较
      • 8.5. 与气候控制的模型比较
      • 8.6. 概括
      • 8.7. 整体车辆热管理
      • 8.8. 技术时间表
      • 8.9. PTC 与热泵
      • 8.10. 最近的带热泵的电动汽车
      • 8.11. BEV 热泵预测
      • 8.12. 进一步创新
      • 8.13. 精密热管理的优势
      • 8.14. 热管理高级控制:关键参与者和技术

      9. 20 份具有 SWOT 分析的公司简介

      • 9.1. Applied Electric Vehicles Australia
      • 9.2. Dezhou China
      • 9.3. Evovelo Spain
      • 9.4. Estrema Italy
      • 9.5. I-FEVS Italy
      • 9.6. Jiangte Joylong Automobile China
      • 9.7. Lightyear Netherlands
      • 9.8. LimCar ElettraCity-2 Italy
      • 9.9. Mahle Germany
      • 9.10. Midsummer Sweden
      • 9.11. Nidec Japan
      • 9.12. Nio China
      • 9.13. Schaeffler Germany
      • 9.14. Sono Motors Germany
      • 9.15. Squad Mobility Netherlands
      • 9.16. Sunnyclist Greece
      • 9.17. Swift Solar USA
      • 9.18. Teijin Japan
      • 9.19. Visedo Finland
      • 9.20. Zoop Turkey
  • 目录
    Product Code: ISBN 9781913899509

    Title:
    Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041
    Materials opportunities, simplification, lightweighting, 3-5 photovoltaics,
    solid state batteries, zero-emission range extenders, supercapacitors, wide bandgap,
    graphene, aluminium, sun-tracking, heat pumps.

    Fast charging is all the talk now but doubling then trebling the range is seismic. The world solves its problems by eliminating infrastructure. The 285 page IDTechEx report, "Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041" spells it out.

    The report answers such questions as:

    • Why is range improvement an ongoing, primary car battleground?
    • What are the best ways of making affordable cars with 1000mile (1600km) range and when will it happen?
    • What percentage of cars will have what best range 2021-2041?
    • What percentage contributions from each technology and who leads?
    • Detail on emerging simplification, lightweighting, solar bodywork, new components, batteries?
    • What is the technology roadmap by year to achieving these ranges 2021-2041?
    • Best ranges are currently achieved in different ways. How can we combine them?
    • What other options will emerge from the research pipeline. When, from whom?
    • What to believe about solid state batteries. Critically compare and predict?
    • Decade of huge improvement in lithium-ion battery format, software, chemistry, cost. Detail and timing?
    • What about supercapacitors, multifunctional composites, the two zero-emission range-extender options?
    • Lessons from 30 different approaches from 30 vehicle companies appraised?

    IDTechEx heavily discounts many promises, given the history of over-optimism, but it predicts strengthening demand for range, giving the many reasons why, and huge progress towards it. Learn how the technologies enabling long range bring other delights. Solar bodywork gives gentle users travel without ever using a charging station and the first get-you-home feature. If you drain the battery, you just wait and the body charges the car enough to get to a charger. Lightweighting aids acceleration and cost. The day is coming when there is no reason to buy a car that needs frequent charging.

    Researched by multilingual PhD level IDTechEx analysts worldwide, the unique 285 page IDTechEx report, "Routes to 1000Mile (1600km) Battery Electric Cars 2021-2041" starts with an Executive Summary and Conclusions. Here you see the many reasons for increasing maximum range, the existing and the planned enabling technologies. Detailed infograms show trends, achievements, research pipeline with roadmaps 2021-2041. See when there will be wide availability of given long ranges and the percentage of cars with them. Quantified are the four primary contributors to widely-available range being 760 miles in 2031, up a startling 2.4 times on today. IDTechEx calculations are discounted by factoring in past over-promising by developers and OEMs and by deep analysis of technical and scaleup challenges and solutions ahead. For example, contrary to popular understanding, the next decade is not primarily about solid state batteries though they figure strongly in 2031-2041 forecasts and roadmaps presented for range extension.

    Chapter 2 Introduction concerns perpetual cars, relevant smart city issues, geopolitical implications, iterative methodology for introducing range-extending technologies. A sensible starting point for the detail is Tesla, the world's most valuable auto company, because it got there largely by offering longest range and being exclusively focussed on battery-electric vehicles. Chapter 3 "Tesla Holistic Approach" describes how it has achieved range by many small things such as cable elimination, more efficient motors, low drag factor, best batteries. See how it will go much further with massive simplification beyond those giant aluminium diecastings. Read its advice on how to design motors.

    Then come chapters on the technologies emerging with many new examples. Chapter 4 is on simplification and lightweighting to increase range. See in-wheel and eAxle motors with integrated power electronics, voltage increase shrinking cables and motors, structural energy storage, in-mold, 3D, transparent and edit-able electronics and electrics, merging components, new battery-cooling achievements, multi-functional composites. This is a 20 year view including Rivian, VW Group and other innovators. It is supported by a detailed jargon buster at the start of the report and by company profiles.

    Chapter 5 concerns solar cars with increased range. This just got serious with major moves by Hyundai, Tesla, Toyota, VW Group and other giants plus startups selling solar vehicles, not just dreaming. How did Sono Motors get over 13,000 orders by emphasising all-over solar? The many solar formats such as film-wrap or load-bearing are critically appraised and the roadmaps and benefits are compared now and in future, even unfolding, sun tracking and super-efficient versions. Chapter 6 dives into the chemistries with many actual examples of single crystal silicon, CIGS and GaAs on cars, comparison charts, edit-able, multijunction and other options even metamaterial-boosting and comparison of solar cars that never plug in.

    The 26 pages of chapter 7 deeply examine batteries and supercapacitors increasing range. Here is the structural battery, module elimination, potential disruptors to lithium-ion quantified and criticised, questioning trumpeted solid-state car batteries promised in cars 2024-6. See academic figures for energy density improvement by chemistry into the future then IDTechEx prediction of commercially available energy density by year. Chapter 8 presents range increases from future thermal management. Chapter 9 gives 20 company profiles each accompanied by SWOT analysis. This focuses on what they are doing to extend car ranges.

    Analyst access from IDTechEx

    All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

    TABLE OF CONTENTS

    1. EXECUTIVE SUMMARY AND CONCLUSIONS

    • 1.1. Purpose of this report
    • 1.2. The race is on. Why?
    • 1.3. Primary conclusions: general
    • 1.4. Primary conclusions: long-range technology options
    • 1.5. Routes to more energy/ longer range by harvesting external energy
    • 1.6. Routes to more energy/ longer range by zero-emission range extenders
    • 1.7. Routes to more energy/ longer range by new components
    • 1.8. Routes to more energy/ longer range by vehicle design and materials
    • 1.9. Market forecasts and technology timelines for long range BEVs 2021-2041
      • 1.9.1. New range-extending technology options widely adopted 2021-2041
      • 1.9.2. When several manufacturers mass produce EPA/WLTP long range BEV cars 2021-2041
      • 1.9.3. Commercialisation timeline for edit-able electronics 2020-2041
      • 1.9.4. Application roadmap of perovskite photovoltaics
    • 1.10. Market forecast for long range premium BEV cars including Tesla
      • 1.10.1. Number of long range units sold globally by year as % of all cars 500 mile and 1000 mile range 2021-2041
      • 1.10.2. Global photovoltaic technology share $bn 2041 for all markets including cars

    2. INTRODUCTION

    • 2.1. Perpetual cars
    • 2.2. Coping with the red-hot city donut
    • 2.3. Major geopolitical implications
    • 2.4. Global differences
    • 2.5. No - not fuel cells
    • 2.6. Trend to larger more power-hungry cars
    • 2.7. Progress now
    • 2.8. Complexity reduced
    • 2.9. Increased range means limit the increase in parts
    • 2.10. Iterative improvement
    • 2.11. Solar is very powerful
    • 2.12. Solar car patents
    • 2.13. New battery materials increase range

    3. TESLA HOLISTIC APPROACH

    • 3.1. Overview
    • 3.2. Tesla holistic approach
    • 3.3. Tesla structural battery and next chemistries and processes
    • 3.4. Tailored battery chemistries
    • 3.5. Tesla Model 3 and Y greatly simplified by large diecasting
    • 3.6. Tesla autonomy simplification - no radar or lidar
    • 3.7. Tesla motor designs - performance with range

    4. SIMPLIFICATION, EFFICIENCY, LIGHTWEIGHTING TO INCREASE RANGE

    • 4.1. Overview
    • 4.2. Improving and integrating motors to increase range
      • 4.2.1. eAxles integrate many components
      • 4.2.2. Controls integrated with motors
      • 4.2.3. In-wheel motor systems replace many parts
      • 4.2.4. Less motor cooling increases range
      • 4.2.5. Voltage increase improves range
    • 4.3. Thermal management can increase range
    • 4.4. Merging aircon compressor and motor
    • 4.5. Power cable weight reduction: Aluminium graphene, high voltage, intentions, issues
    • 4.6. Metamaterials and metal patterning for simplification and lightweighting
    • 4.7. Multifunctional composites
    • 4.8. Structural electronics
    • 4.9. Routes to self-healing composite parts
    • 4.10. 3D electronics, electrics, optics, magnetics
      • 4.10.1. 3D printing, In-Mold Structural Electronics™
      • 4.10.2. Edit-able electronic and electric smart materials
    • 4.11. Transparent electronics and electrics
      • 4.11.1. Overview
      • 4.11.2. How transparent and translucent materials in cars increase range and more
      • 4.11.3. RadarGlass™
      • 4.11.4. SmartMesh™ transparent heater wrap increasing range 6%
      • 4.11.5. Conclusions
    • 4.12. Structural batteries and supercapacitors

    5. SOLAR CARS WITH INCREASED RANGE

    • 5.1. Basics
      • 5.1.1. Definitions and history
      • 5.1.2. Amount of range increase by solar car bodywork
      • 5.1.3. Benchmarking
    • 5.2. Tesla solar Cybertruck and alternatives
    • 5.3. Mainstream solar cars and car-like vehicles
      • 5.3.1. Aptera solar car
      • 5.3.2. Economia Pakistan
      • 5.3.3. Fisker USA
      • 5.3.4. Fraunhofer ISE Germany
      • 5.3.5. Hyundai-Kia Korea
      • 5.3.6. Karma USA no longer
      • 5.3.7. Lightyear Netherlands
      • 5.3.8. Manipal IT India
      • 5.3.9. Sono Motors Germany
      • 5.3.10. Toyota Japan
      • 5.3.11. Stella Lux, Stella Era, Stella Vie Netherlands
    • 5.4. Conclusions

    6. PHOTOVOLTAIC VEHICLE TECHNOLOGIES

    • 6.1. New geometry can greatly increase range
    • 6.2. Choice of chemistry
    • 6.3. Cell geometries of transparent photovoltaics
    • 6.4. Efficiency and affordability
    • 6.5. What is fitted on satellites appears on cars later
    • 6.6. Single junction PV options beyond silicon
    • 6.7. scSi PV on vehicles
    • 6.8. CIGS PV on vehicles
    • 6.9. Solar racers show the future - triple junction lll-V, solar on sides
    • 6.10. GaAs PV on vehicles
    • 6.11. Leading solar car specifications: Sono, Lightyear and research by Toyota
    • 6.12. Potential for multi-junction solar on cars
    • 6.13. Photovoltaics progresses to become paint
    • 6.14. Materials problems and opportunities being pursued
      • 6.14.1. Overview
      • 6.14.2. CIGS
      • 6.14.3. Perovskite photovoltaics overlayers and transparent film
      • 6.14.4. lll-V materials
      • 6.14.5. Metamaterial boosts photovoltaic cooling and capture increasing range
      • 6.14.6. Examples of EIEV technologies in cars

    7. BATTERIES AND SUPERCAPACITORS IMPROVING RANGE

    • 7.1. New geometry can greatly increase range
    • 7.2. Battery cell improvement roadmap
    • 7.3. Potential disruptors to Li-ion
    • 7.4. Academic figures on energy density improvement
    • 7.5. Increasing BEV battery cell energy density
    • 7.6. Increasing EV battery cell specific energy
    • 7.7. Extrapolating improvements to energy density and specific energy
    • 7.8. Improvements to cell energy density and specific energy
    • 7.9. Prototype and targeted improvements to cell energy density and specific energy
    • 7.10. Commentary on improving cell energy densities
    • 7.11. Example: Harvard University claim breakthrough in 2021
    • 7.12. IDTechEx calculations
    • 7.13. IDTechEx energy density calculations - by cathode
    • 7.14. Energy density improvements from silicon
    • 7.15. Next generation cathodes
    • 7.16. Cell design to increase energy densities
    • 7.17. How high can you go with 'conventional' electrodes?
    • 7.18. How high can you go with next gen materials?
    • 7.19. Discussion of outlook for Li-ion energy density improvement
    • 7.20. Timeline and outlook for Li-ion energy densities
    • 7.21. Many claimed advances - Samsung and KIST examples
    • 7.22. Concluding remarks

    8. IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE

    • 8.1. Range Calculations
    • 8.2. Impact of Ambient Temperature and Climate Control
    • 8.3. Impact of Ambient Temperature and Climate Control
    • 8.4. Model Comparison with Ambient Temperature
    • 8.5. Model Comparison with Climate Control
    • 8.6. Summary
    • 8.7. Holistic Vehicle Thermal Management
    • 8.8. Technology Timeline
    • 8.9. PTC vs Heat Pump
    • 8.10. Recent EVs with Heat Pumps
    • 8.11. Heat Pumps for BEVs Forecast
    • 8.12. Further Innovations
    • 8.13. Advantages of Sophisticated Thermal Management
    • 8.14. Thermal Management Advanced Control: Key Players and Technologies

    9. 20 COMPANY PROFILES WITH SWOT ANALYSIS

    • 9.1. Applied Electric Vehicles Australia
    • 9.2. Dezhou China
    • 9.3. Evovelo Spain
    • 9.4. Estrema Italy
    • 9.5. I-FEVS Italy
    • 9.6. Jiangte Joylong Automobile China
    • 9.7. Lightyear Netherlands
    • 9.8. LimCar ElettraCity-2 Italy
    • 9.9. Mahle Germany
    • 9.10. Midsummer Sweden
    • 9.11. Nidec Japan
    • 9.12. Nio China
    • 9.13. Schaeffler Germany
    • 9.14. Sono Motors Germany
    • 9.15. Squad Mobility Netherlands
    • 9.16. Sunnyclist Greece
    • 9.17. Swift Solar USA
    • 9.18. Teijin Japan
    • 9.19. Visedo Finland
    • 9.20. Zoop Turkey