NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

载人电动飞机:智慧城市和地区2021-2041

Manned Electric Aircraft: Smart City and Regional 2021-2041

出版商 IDTechEx Ltd. 商品编码 1002639
出版日期 内容资讯 英文 386 Pages
商品交期: 最快1-2个工作天内
价格
载人电动飞机:智慧城市和地区2021-2041 Manned Electric Aircraft: Smart City and Regional 2021-2041
出版日期: 2021年04月27日内容资讯: 英文 386 Pages
简介

标题
载人电动飞机:智慧城市和地区2021-2041
固定翼飞机,eVTOL(电子垂直起降),eCTOL(常规电动起降),空中出租车,太阳能飞机,BEV(电池电动车),燃料电池飞机,飞机电动机,电推进。

"零排放的飞机预计到2041年将达到304亿美元,而今天几乎没有。"

该报告是第一个预测未来20年电动飞机的报告,同时反映了确定的300亿美元的巨大新市场将如何构成的现实。首先,它涵盖了多达100名乘客和同等货机的飞机,探讨了大型飞机的电气化如何融合到2050年。例如,到2041年,零排放飞机市场价值的一半将来自固定翼常规起飞降落eCTOL,一半降落在eVTOL中,但都涉及通用航空和商业应用。在较重的一端,燃料电池和混合动力总成占有一席之地,这在报告的内容中得到了反映。

报告中约有三分之一专门用于技术,三分之二专门用于项目和飞机。由于它们是2021-2041的关键,因此在技术领域特别关注电池,电动机,太阳能和VTOL空气动力学。但是,您还可以学习动力总成,包括以微型电网和汽车为基准的电压趋势。方法是向包括新的智慧城市在内的社会揭示商业机会和收益。机会包括材料,设备和系统的机会。这不是学术性的。将数据与预测进行比较不是历史以外的事情。

该报告独特地具有基于IDTechEx博士水平的创新思想和批评,遍布全球的多语种分析师以及20多年研究该主题和拜访研究人员的方法,其中包括让支持者在IDTechEx活动上发表演讲。的确,只有IDTechEx可以在电动船和陆地车辆,印刷和柔性电子以及电池化学等相关方面正在发生或将要发生的事情中统统考虑。

只有IDTechEx才对所有这些方面进行深入分析,包括专门针对eVTOL飞机的方面。我们揭示了一项技术的过早部署将很可能导致严重事故,并且在未来二十年中,各种机身和动力总成在商业上取得成功的阶段将有很大不同。我们发现投资的平衡并不能反映相对的市场机会,并且由于种种原因,人们还没有完全认识到某些选择比其他选择安全得多。基准最佳实践揭示了许多机会,可以在成本低廉,安全性,多功能性以及当地面支持不可用时提供 "回家" 功能。某些确定的项目一定会失败。有些潜力远超出投资者的想像。

执行摘要和结论充满了容易掌握的新信息报,路线图和预测。它解释了通用航空/空中作业GA/AW和商用航空中的零排放飞机。瞭解两个业务部门如何涉及垂直起降eVTOL飞机和常规固定翼常规起降eCTOL。两者都涉及在智能城市,货运和其他任务之间和之间旅行的出租车。将eVTOL多直升机与矢量推力进行比较。我们计算了eVTOL在城市内部和城市间旅行中的可行性,显示了真正节省时间和成本的成功方法,以及部署后在地下和地下可用的替代方法。

根据飞机类型比较新的重要能量收集选项。请参阅IDTechEx和巨头的六份路线图,以及12 IDTechEx的预测第2021-2041条(数字,单位价值,市场价值以及按地理区域,飞机尺寸和动力总成类型进行的预测)。这是IDTechEx对通用航空2021-2041的预测,它根据历史记录来计算小型固定翼飞机的压抑需求。这是对100个项目的射程,爬升,最大起飞重量和射程的分析,揭示了混合动力车在仅电池和eVTOL性能方面的表现。

第2章简介介绍了称为More Electric Air MEA和电池vs混合动力飞机的大型飞机的排放,认证,法规,电气化。它解释了计划仅使用电池和长途燃料电池选件的100座支线飞机。请参阅2021-2041信息报,有关 "电推力的快速发展" 和 "实现与常规飞机的成本平价" 。总结了GE,霍尼韦尔,雷神,劳斯莱斯和SAFRAN等巨头的工作,并解释了 "分布式推力" 和太阳能飞机机身的电气独特性,它们现在对于提高性能,成本和安全性都变得极为重要。将不同的eVTOL架构与直升机进行了比较。

第3章异常冗长且详尽。它评估了43个电池式电动固定翼飞机项目,这些项目揭示了技术优势和错误,利用超导性,风湍流和太阳等新技术选择,两栖或达到300mph的速度。第4章简要介绍了eVTOL。第6章揭示了燃料电池飞行器固定翼和eVTOL的机遇与挑战,并显示了最新进展和商业案例,相较之下,好坏相提并论。第6章介绍混合动力电动飞机,主要是固定翼,其中包括特殊任务的想像形式。第7、8、9和10章将更详细地介绍eVTOL技术选项和业务案例,因为它们具有最大的投资和风险,但瞭解却最少。

报告以所有电动飞机的启用技术结尾-第11章电池,第12章电动机和第13章Sol ar。

回答的问题包括:

  • 世界上所有电动飞机2021-2041的第一份详细预测?
  • 与支持者到2041年相比的独立新路线图?
  • 铬的技术和设计itical分析?
  • 在航空航天和其他领域以最佳实践为基准?
  • 投资与相对机会的匹配程度如何?
  • 如何大大提高安全性,成本和性能?
  • 死胡同是什么?
  • 哪些公司是好是坏?
  • 在某些方面可以进一步领先的其他行业的经验教训是什么?
  • 什么是研究渠道?

来自IDTechEx的分析师访问权限

所有报告购买都包括长达30分钟的电话咨询时间,该分析员将与专家分析师联系,以帮助您将报告中的关键发现与您要解决的业务问题联系起来。需要在购买报告后的三个月内使用。

目录

1。执行摘要

  • 1.1。本报告目的
  • 1.2。关键结论
  • 1.3。零排放空中出租车与出售2021-2041的支线飞机技术的比较
  • 1.4。太阳能选项
  • 1.5。能源独立的智慧城市及其eCTOL和eVTOL载人飞机
  • 1.6。eVTOL详细
      < li> 1.6.1。什么是eVTOL飞机?
    • 1.6.2。eVTOL架构
    • 1.6.3。为什么选择eVTOL飞机?
    • 1.6.4。eVTOL起步
    • 1.6.5。关于节省空中出租车时间的结论
    • 1.6.6。在eVTOL上投资的庞大公司 < li> 1.6.7。令人兴奋的初创企业吸引大量资金
    • 1.6.8。第一批eVTOL空中出租车何时启动?
    • 1.6.9。eVTOL作为城市大众流动性吗?
    • 1.6.10。eVTOL空中出租车的优势在哪里?
    • 1.6.11。自主eVTOL fligh值□
  • 1.7。电池要求和改进
  • 1.8。锂离子化学快照:2020,2025,2030
  • 1.9。电机/动力总成要求
  • 1.10。复合材料要求
  • 1.11。基础设施要求
  • 1.12。俄勒ctric飞机路线图
    • 1.12.1。IDTechEx详细的载人电动飞机路线图2021-2041
    • 1.12.2。波音和NASA电动飞机路线图到2050年
    • 1.12.3。空中客车公司和联合技术公司 "到2040年将推出更多电动飞机MEA计划
    • 1.12.4。赛峰电动飞机到2050年的路线图
    • 1.12.5。西门子电动飞机到2050年的路线图
  • 1.13。IDTechEx预计的范围和爬升
  • 1.14。IDTechEx MTOW与范围预测
  • 1.15。市场预测2021-2041
    • 1.15.1。通用航空全球销售部门2021-2041
    • 1.15.2。通用航空全球价值市场2021-2041
    • 1.15.3。20PAX编号2021-2041的固定翼CTOL零排放飞机
    • 1.15.4。20PAX单价下的固定翼C TOL零排放飞机2021-2041
    • 1.15.5。价值20亿美元的固定翼CTOL零排放飞机20-20亿美元市场2021-2041
    • 1.15.6。固定翼CTOL零排放飞机20-100PAX全球编号2021-2041
    • 1.15。7.固定翼CTOL零排放飞机20-100PAX全局单位值2021-2041
    • 1.15.8。固定翼CTOL零排放飞机20-100PAX价值市场2021-2041
    • 1.15.9。eVTOL预测摘要
    • 1.15.10。eVTOL空中出租车销售预测其2018-2041年
    • 1.15.11。eVTOL航空出租车市场收入预测2018-2041年为十亿美元
    • 1.15.12。零排放飞机销售价值市场的区域份额2021-2041
  • 1.16。历史统计
    • 1.16.1。GAMA通用航空飞机的销售和市场规模
    • 1.16.2。通用航空全球市场的GAMA数据
    • 1.16.3。再见航空评估被压抑的通用航空需求
    • 1.16.4。飞机类型排名前5的通用航空OEM
    • 1.16.5。EA SA eVTOL市场价值预测2035
    • 1.16.6。全球直升机机队
    • 1.16.7。GAMA通用航空直升机销售
    • 1.16.8。直升机原始设备制造商

2。简介

  • 2.1。大型单通道飞机排放量最大
  • 2.2。来自两端-小型纯电动PEV(BEV)和大型电动MEA
  • 2.3。跑步才能走路?
  • 2.4。动力总成选项
  • 2.5。电推力2021-2041的突破
  • 2。6.实现成本平价-小事至上
  • 2.7。法规,法规,认证
  • 2.8。顶级航空制造商的参与
  • 2.9。收入排名前5位的航空航天系统供应商
    • 2.9.1。美国通用电气
    • 2.9.2。霍尼韦尔
    • 2.9.3。劳斯莱斯英国
    • 2.9.4。美国雷神技术公司
    • 2.9.5。法国赛峰
  • 2.10。分布式电力推进
  • 2.11。城市空气流动的梦想
  • 2.12。先进的空气流动性
  • 2.13。eVTOL应用
  • 2.14。击败目前的通用航空飞机
  • 2.15。为什么直升机对UAM不利
  • 2.16。eVTOL的范围和耐力极限
  • 2.17。是什么使eVTOL成为可能?
  • 2.18。eVTOL启动投资
  • 2.19。材料和能量收集整合
    • 2.19.1。复合材料面临的主要挑战
    • 2.19.2。飞机的能量收集选项:更多选择
  • 2.20。翻新
  • 2.21。基础架构和运输集成

3。电池电动固定翼飞机

  • 3.1。概述
  • 3.2。美国再见航空
  • 3.3。欧洲空中客车公司
  • 3.4。Ampaire Tailwind美国
  • 3.5。挪威赤道飞机
  • 3.6。Aura Aero法国
  • 3。7.以色列航空飞机
  • 3.8。H55瑞士
  • 3.9。瑞典心脏航空航天公司
  • 3.10。美国Luminati航空航天
  • 3.11。美国宇航局
    • 3.11.1。需求研究
    • 3.11.2。分布推力:X57 Maxwell
    • 3.11.3。低温氢燃料电池
  • 3.12。PC-Aero/Elektra Solar/SolarStratos德国瑞士
  • 3.13。Pipistrel斯洛文尼亚
  • 3.14。雷神联合技术公司X-Plane USA
  • 3.15。劳斯莱斯(Rolls Royce),德南(Tecnam),怀德罗(Wideroe)-P Volt UK,挪威
  • 3.16。劳斯莱斯ACCEL和其他英国项目
  • 3.17。美国太阳能飞行
  • 3.18。美国莱特电气
  • 3.19。其他

4。电池电动EVTOL飞机

  • 4.1。欧洲空中客车公司
  • 4.2。美国射手航空
  • 4.3。贝尔·泰瑟(Bell Textr)谈美国
  • 4.4。美国BETA Technologies
  • 4.5。波音PAV中级固定翼/VTOL美国
  • 4.6。亿航中国
  • 4.7。巴西航空工业公司:Eve(EmbraerX)巴西
  • 4.8。现代:S-A1韩国
  • 4.9。Jaunt航空出行:Journey Air Taxi USA
  • 4.10。美国乔比航空
  • 4.11。百合属德国
  • 4.12。穆格:SureFly USA
  • 4.13。SkyDrive:SD-XX日本
  • 4.14。直升机德国

5。燃料电池电动飞机

  • 5.1。概述
  • 5.2。空中客车燃料电池舱
  • 5。3.过去的燃料电池项目
  • 5.4。质子交换膜PEM燃料电池
  • 5.5。ZeroAvia英国
  • 5.6。NASA低温
  • 5.7。兰格研究德国
  • 5.8。燃料电池eVTOL
  • 5.9。PEM eVTOL的结论

6。混合动力飞机

  • 6.1。概述
  • 6.2。劳斯莱斯混合动力总成英国
  • 6.3。混合动力飞机
    • 6.3.1。eSAT "德国静音航空出租车
    • 6.3.2。Faradair BEHA英国
    • 6.3.3。法国VoltAero

7。行程使用情况和优化:EVTOL在哪里有优势

  • 7.1。eVTOL出租车会减少旅途时间吗?
  • 7.2。eVTOL Multicopter vs Robotaxi:10公里路程
  • 7.3。eVTOL vs Robotaxi:示例10公里旅程
  • 7.4。eVTOL多直升机vs Robotaxi:40公里的旅程
  • 7.5。eVTOL vs Robotaxi:40公里旅程示例
  • 7.6。Multicopter eVTOL VS Robotaxi:100公里路程
  • 7.7。矢量推力eVTOL VS Robotaxi:100公里路程
  • 7.8。eVTOL vs Robotaxi:示例100公里旅程 7.9。航空出租车时间优势的重要因素
  • 7.10。节省空中出租车时间的结论

8。IDTECHEX EVTOL成本分析

  • 8.1。TCO分析:eVTOL Taxi $/50km行程(基本案例)
  • 8.2。eVTOL vs直升机运营成本
  • 8.3。eVTOL飞机的前期成本
  • 8.4。节省eVTOL的运营燃料成本
  • 8.5。自主飞行的价值
  • 8.6。TCO vs直升机Uber Air $/英里
  • 8.7。对电池成本和性能的敏感性
  • 8.8。对前期/基础设施成本的敏感性
  • 8.9。对平均行程长度的敏感性
  • 8.10。TCO分析:$/15公里旅程:多直升机eVTOL设计
  • 8.11。TCO $/15km自主行程:多直升机vs基本案例

9。EVTOL体系结构

  • 9.1。世界eVTOL飞机目录
  • 9.2。eVTOL项目的地理分布
  • 9.3。关键参与者:eVTOL空中出租车
  • 9.4。主要eVTOL架构
  • 9.5。eVTOL架构选择
  • 9.6。eVTOL多旋翼/旋翼飞机
  • 9.7。多直升机:飞行模式
  • 9.8。多旋翼机/旋翼机:主要玩家规格
  • 9.9。多旋翼飞机的优点/缺点
  • 9.10。eVTOL升降机+巡航
  • 9.11。升降机+巡航:飞行模式
  • 9.12。升降机+巡航:主要参与者规格
  • 9.13。升降机+游轮的好处/缺点
  • 9.14。矢量推力eVTOL
  • 9.15。矢量推力:飞行模式
  • 9.16。eVTOL矢量推力:倾斜翼
  • 9.17。Tiltwing:关键播放器规格
  • 9.18。倾斜翼的优点/缺点
  • 9.19。eVTOL矢量推力:倾转器
  • 9.20。Tiltrotor:关键播放器规格
  • 9.21。倾转器的优点/缺点
  • 9.22。第一批eVTOL空中出租车何时启动?
  • 9.23。载人航空出租车eVTOL测试航班
  • 9.24。无人驾驶出租车eVTOL模型测试飞行
  • 9.25。航程和巡航速度:电动eVTOL设计
  • 9.26。悬停提升效率和圆盘加载
  • 9.27。eVTOL架构的悬停和巡航效率
  • 9.28。比较lexity,危害性及巡航性能
  • 9.29。eVTOL架构比较

10。支持EVTOL开发的计划

  • 10.1。Uber Elevate-Joby Aviation
  • 10.2。推动空中出租车的发展:Uber提升
  • 10.3 。Uber Elevate:战略性OEM车辆合作伙伴关系
  • 10.4。优步飞行器要求
  • 10.5。优步航空任务简介
  • 10.6。美国空军eVTOL支持-Agility Prime
  • 10.7。美国空军-敏捷总理
  • 10.8。敏捷总理:先进的空气流动性生态系统
  • 10.9。NASA:全国先进航空交通运动
  • 10.10。Groupe ADP eVTOL测试区域
  • 10.11。中国无人驾驶航空区
  • 10.12。英国的未来飞行挑战
  • 10.13。Varon Vehicles:美国拉丁美洲的UAM

11。电动飞机电池

  • 11.1。概述
  • 11.2。什么是锂离子电池?
  • 11.3。电化学定义
  • 11.4。电池困境
  • 11.5。eVTOL的电池愿望清单
  • 1 1.6。超过一种类型的锂离子电池
  • 11.7。eVTOL电池要求
  • 11.8。空客最低电池要求
  • 11.9。eVTOL电池范围计算
  • 11.10。航空电池组尺寸
  • 11.11。电池组能量密度的重要性
  • 11.12。eVTOL提升/拖动到范围的重要性
  • 11.13。Uber Air建议的电池要求
  • 11.14。电池容量
  • 11.15。电池组:不仅仅是电池
  • 11.16。卸下电池模块
  • 11.17。eVTO L电池:比能量与放电率
  • 11.18。电池500
  • 11.19。E-One Moli Energy Corp.
  • 11.20。电力系统(EPS):锂离子电池
  • 11.21。电力系统(EPS)
  • 11.22。Amprius Inc:矽阳极
  • 11.23。勒克兰奇能源密度目标
  • 11.24。从锂离子继续前进?
  • 11.25。锂离子电池以外的锂电池
  • 11.26。锂离子化学快照:2020,2025,2030
  • 11.27。锂硫电池(Li-S)
  • 11.28。LSB的优势
  • 11.29。锂硫能量密度
  • 11.30。OXIS Energy:锂硫电池
  • 11.31。锂金属和固态电池(SSB)
  • 11.32。固体能源系统-固态电池
  • 11.33。Sion Power Corporation:锂金属电池
  • 11.34。Cuberg:锂金属电池
  • 11.35。eVTOL的电池化学比较
  • 11.36。电池快速充电
  • 11.37。电池交换
  • 11.38。分布式电池模块
  • 11.39。eVTOL电池成本
  • 11.40。eVTOL电池的开发重点

12。所需的电动机

  • 12.1。eVTOL电机/动力总成要求
  • 12.2。eVTOL飞机电机功率调整
  • 12.3。eVTOL功率要求:千瓦估算
  • 12.4。eVT OL功率要求
  • 12.5。eVTOL功率要求:千瓦估算
  • 12.6。电动机和分布式电力推进
  • 12.7。eVTOL电动机数量
  • 12.8。电机定径
  • 12.9。电动机设计
  • 12.10。比较电动机结构和案情阿里森
  • 12.11。无刷直流电动机(BLDC)
  • 12.12。BLDC电机:优势与劣势
  • 12.13。BLDC:基准化
  • 12.14。永磁同步电动机(PMSM)
  • 12.15。PMSM:优点,Disad的有利点
  • 12.16。PMSM:基准化
  • 12.17。轴向磁通电动机
  • 12.18。为什么在eVTOL中使用轴向磁通电机?
  • 12.19。轭或无轭轴向通量
  • 12.20。轴向磁通电动机-有趣的玩家
  • 12.21。的轴向磁通电机球员名单小号
  • 12.22。亚萨
  • 12.23。劳斯莱斯/西门子
  • 12.24。埃玛克斯
  • 12.25。电子推进
  • 12.26。H3X
  • 12.27。麦加
  • 12.28。马格尼克斯
  • 12.29。美高梅
  • 12.30。赛峰
  • 12.31。实例探究

13。太阳能飞机的机会

  • 13.1。向太阳能无人机学习
  • 13.2。胶体量子点喷涂在太阳能上
  • 13.3。多模式能量收集
  • 13.4。现在和将来的航空器收割技术
  • 13.5。机械与电能无关的车辆
  • 13.6。电动汽车的系统
  • 13.7。节能正型大型车辆
  • 13.8。太阳能汽车取代柴油发电机组
目录
Product Code: ISBN 9781913899431

Title:
Manned Electric Aircraft: Smart City and Regional 2021-2041
Fixed wing aircraft, eVTOL (electric vertical takeoff and landing), eCTOL (electric conventional take-off and landing), air taxis, solar planes, BEVs (battery electric vehicles), fuel cell aircraft, electric motors for aircraft, electric propulsion.

"Expect $30.4 billion 2041 for zero-emission aircraft from almost nothing today."

This report is the first to forecast electric aircraft for 20 years ahead, while reflecting the realities of how the huge new $30 billion market that is identified will be structured. Primarily, it covers aircraft up to 100 passengers and equivalent freighters, touching on how electrification of larger aircraft converges with these to 2050. For example, 2041 will see about half of the zero-emission aircraft market value being in fixed-wing conventional takeoff and landing eCTOL and half in eVTOL but both involving General Aviation and Commercial applications. At the heavier end, fuel cell and hybrid powertrains have a place and that is reflected in the coverage of the report.

About one third of the report is dedicated to the technology and two thirds to the projects and aircraft. Because they are key 2021-2041, particular attention is given to batteries, motors, solar and VTOL aerodynamics in the technology sections. However, you can also learn powertrains including voltage trends benchmarked against minigrids and cars. The approach is to reveal commercial opportunities and benefits to society including the new smart cities. The opportunities include those for materials, devices and systems. It is not academic. It is not historical beyond data to compare with forecasts.

Uniquely the report has creative ideas and criticism based on the IDTechEx PhD level, multilingual analysts worldwide and over 20 years of studying the subject and visiting the researchers, including having the proponents speak at IDTechEx events. Indeed, only IDTechEx can put it all in the context of what is happening and about to happen in relevant aspects like electric boats and land vehicles, printed and flexible electronics and battery chemistry generally.

Only IDTechEx has drill down reports on all these aspects including one specifically on eVTOL aircraft. We reveal how premature deployment of one technology will probably result in a serious accident and how the phasing of commercial success with the various airframes and powertrains will be very different over the coming twenty years. We find that the balance of investment does not reflect the relative market opportunities and it is not fully acknowledged how some options are far safer than others for a variety of reasons. Benchmarking best practice reveals many opportunities to improve cost, safety, multifunctionality and even provide get-you-home features when ground support is unavailable. Some identified projects are guaranteed to fail. Some have far greater potential than investors realise.

The Executive Summary and Conclusions is full of new infograms, roadmaps and forecasts, easily grasped. It explains zero-emission aircraft in general aviation/ aerial work GA/AW and in commercial aviation. See how both business sectors involve vertical takeoff and landing eVTOL aircraft and conventional fixed-wing conventional takeoff and landing eCTOL. Both involve air taxis travelling in and between smart cities, freight and other missions. eVTOL multicopters are compared with vectored thrust. We calculate the viability of eVTOL for inside cities and for city-to-city travel showing what will succeed in genuinely saving time and cost against what alternatives will be available on and underground when they deploy.

Newly important energy harvesting options are compared by type of aircraft. See six roadmaps from IDTechEx and the giants and 12 IDTechEx forecasts 2021-2041 (numbers, unit value, market value and forecasts by geographic area, aircraft size and powertrain type). Here is the IDTechEx forecast of general aviation 2021-2041, calculating pent-up demand for small fixed-wing aircraft based on historic graphs. Here is analysis of 100 projects in range vs climb and maximum takeoff weight vs range revealing what hybrids achieve vs battery-only and eVTOL performance.

Chapter 2 Introduction introduces emissions, certification, regulation, electrification of large aircraft called More Electric Aircraft MEA and battery vs hybrid aircraft. It explains planned 100 seat regional aircraft on batteries alone and long-distance fuel-cell options. See 2021-2041 infograms on "Radical advances in electric thrust" and "Achieving cost parity with conventional aircraft". Work at the giants GE, Honeywell, Raytheon, Rolls Royce and SAFRAN is summarized and the electric uniques of "distributed thrust" and solar airframes are explained, both now becoming extremely important for improving performance, cost and safety. Different eVTOL architectures are compared with helicopters.

Chapter 3 is exceptionally long and detailed. It appraises 43 battery-electric fixed-wing aircraft projects revealing technical excellence and mistakes, new technology options such as harnessing superconductivity, wind turbulence and sun, amphibious or achieving 300mph speed. Chapter 4 more briefly does the same for eVTOL. Chapter 6 reveals the opportunity and challenge for fuel cell aircraft fixed wing and eVTOL, showing latest progress and business cases, good compared to bad. Chapter 6 is on hybrid electric aircraft, mainly fixed-wing including imaginative forms for special tasks. Chapters 7,8,9 and 10 cover more detail on eVTOL technology options and business cases because these have the biggest investment and risk yet the least understanding.

The report ends with enabling technologies for all electric aircraft - Chapter 11 Batteries, Chapter 12 Motors and Chapter 13 Solar.

Questions answered include:

  • World's first detailed forecasts for all electric aircraft 2021-2041?
  • Independent new roadmaps compared to those from proponents to 2041?
  • Critical analysis of technologies and designs?
  • Benchmarking against best practice in aerospace and elsewhere?
  • How is the investment poorly matched against the relative opportunities?
  • How can safety, cost and performance be greatly improved?
  • What are the dead ends?
  • Which companies are good bad or indifferent?
  • What are the lessons from other industries that are further ahead in some respects?
  • What is the research pipeline?

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Purpose of this report
  • 1.2. Key conclusions
  • 1.3. Comparison of zero-emission air taxis and regional aircraft technologies selling 2021-2041
  • 1.4. The solar option
  • 1.5. Energy independent smart cities and their eCTOL and eVTOL manned aircraft
  • 1.6. eVTOL in detail
    • 1.6.1. What is an eVTOL aircraft?
    • 1.6.2. eVTOL Architectures
    • 1.6.3. Why eVTOL Aircraft?
    • 1.6.4. eVTOL getting off the ground
    • 1.6.5. Conclusions on air taxi time saving
    • 1.6.6. Huge companies investing in eVTOL
    • 1.6.7. Exciting start-ups attracting large funding
    • 1.6.8. When will the first eVTOL air taxis launch?
    • 1.6.9. eVTOL as urban mass mobility?
    • 1.6.10. Where is eVTOL air taxi advantage?
    • 1.6.11. Value of autonomous eVTOL flight
  • 1.7. Battery requirements and improvement
  • 1.8. Li-ion Chemistry Snapshot: 2020, 2025, 2030
  • 1.9. Motor / powertrain requirements
  • 1.10. Composite material requirements
  • 1.11. Infrastructure requirements
  • 1.12. Electric aircraft roadmaps
    • 1.12.1. IDTechEx detailed manned electric aircraft roadmap 2021-2041
    • 1.12.2. Boeing and NASA electric aircraft roadmaps to 2050
    • 1.12.3. Airbus and United Technologies "More Electric Aircraft MEA roadmap to 2040
    • 1.12.4. Safran electric aircraft roadmap to 2050
    • 1.12.5. Siemens electric aircraft roadmap to 2050
  • 1.13. IDTechEx projected range and climb
  • 1.14. IDTechEx MTOW vs range projection
  • 1.15. Market forecasts 2021-2041
    • 1.15.1. General aviation global sales units 2021-2041
    • 1.15.2. General aviation global value market 2021-2041
    • 1.15.3. Fixed-wing CTOL zero-emission aircraft under 20PAX number 2021-2041
    • 1.15.4. Fixed-wing CTOL zero-emission aircraft under 20PAX unit price 2021-2041
    • 1.15.5. Fixed-wing CTOL zero-emission aircraft under 20PAX $bn value market 2021-2041
    • 1.15.6. Fixed wing CTOL zero-emission aircraft 20-100PAX global number 2021-2041
    • 1.15.7. Fixed wing CTOL zero-emission aircraft 20-100PAX global unit value 2021-2041
    • 1.15.8. Fixed wing CTOL zero emission aircraft 20-100PAX value market 2021-2041
    • 1.15.9. eVTOL Forecast Summary
    • 1.15.10. eVTOL air taxi sales forecast units 2018-2041
    • 1.15.11. eVTOL air taxi market revenue forecast $ billion 2018-2041
    • 1.15.12. Regional share of zero emission aircraft sales value market 2021-2041
  • 1.16. Historical statistics
    • 1.16.1. GAMA General Aviation aircraft sales and market Size
    • 1.16.2. GAMA data for General Aviation global market
    • 1.16.3. Bye Aerospace appraisal of pent-up general aviation demand
    • 1.16.4. Top 5 General Aviation OEMs By Airplane Type
    • 1.16.5. EASA eVTOL market value estimates 2035
    • 1.16.6. Worldwide helicopter fleet
    • 1.16.7. GAMA General Aviation helicopter sales
    • 1.16.8. Helicopter OEMs

2. INTRODUCTION

  • 2.1. Large single aisle aircraft offer the largest emission gains
  • 2.2. Coming from both ends - small pure electric PEV (BEV) and large more-electric MEA
  • 2.3. Run before you can walk?
  • 2.4. Powertrain options
  • 2.5. Radical advances in electric thrust 2021-2041
  • 2.6. Achieving cost parity - small comes first
  • 2.7. Regulation, legislation, certification
  • 2.8. Involvement of top aerospace manufacturers
  • 2.9. Top 5 aerospace system suppliers by revenue
    • 2.9.1. General Electric USA
    • 2.9.2. Honeywell
    • 2.9.3. Rolls-Royce UK
    • 2.9.4. Raytheon Technologies Corp. USA
    • 2.9.5. SAFRAN France
  • 2.10. Distributed Electric Propulsion
  • 2.11. The Dream of Urban Air Mobility
  • 2.12. Advanced Air Mobility
  • 2.13. eVTOL Applications
  • 2.14. Beating current general aviation aircraft
  • 2.15. Why helicopters are poor for UAM
  • 2.16. Range and Endurance Limitations of eVTOL
  • 2.17. What is making eVTOL possible?
  • 2.18. eVTOL Start-Up Investment
  • 2.19. Materials and energy harvesting integration
    • 2.19.1. Key Challenges for Composites
    • 2.19.2. Energy harvesting options for aircraft: widening choice
  • 2.20. Retrofit
  • 2.21. Infrastructure and transport integration

3. BATTERY ELECTRIC FIXED WING AIRCRAFT

  • 3.1. Overview
  • 3.2. Bye Aerospace USA
  • 3.3. Airbus Europe
  • 3.4. Ampaire Tailwind USA
  • 3.5. Equator Aircraft Norway
  • 3.6. Aura Aero France
  • 3.7. Eviation Aircraft Israel
  • 3.8. H55 Switzerland
  • 3.9. Heart Aerospace Sweden
  • 3.10. Luminati Aerospace USA
  • 3.11. NASA
    • 3.11.1. Requirement study
    • 3.11.2. Distributed thrust: X57 Maxwell
    • 3.11.3. Cryogenic hydrogen fuel cell
  • 3.12. PC-Aero / Elektra Solar/ SolarStratos Germany Switzerland
  • 3.13. Pipistrel Slovenia
  • 3.14. Raytheon United Technologies X-Plane USA
  • 3.15. Rolls Royce, Tecnam, Wideroe - P Volt UK, Norway
  • 3.16. Rolls Royce ACCEL and other projects UK
  • 3.17. Solar Flight USA
  • 3.18. Wright Electric USA
  • 3.19. Others

4. BATTERY ELECTRIC EVTOL AIRCRAFT

  • 4.1. Airbus Europe
  • 4.2. Archer Aviation USA
  • 4.3. Bell Textron USA
  • 4.4. BETA Technologies USA
  • 4.5. Boeing PAV intermediate fixed wing/ VTOL USA
  • 4.6. EHang China
  • 4.7. Embraer: Eve (EmbraerX) Brazil
  • 4.8. Hyundai: S-A1 Korea
  • 4.9. Jaunt Air Mobility: Journey Air Taxi USA
  • 4.10. Joby Aviation USA
  • 4.11. Lilium Germany
  • 4.12. Moog: SureFly USA
  • 4.13. SkyDrive: SD-XX Japan
  • 4.14. Volocopter Germany

5. FUEL CELL ELECTRIC AIRCRAFT

  • 5.1. Overview
  • 5.2. Airbus fuel cell pods
  • 5.3. Fuel cell projects of the past
  • 5.4. Proton Exchange Membrane PEM fuel cells
  • 5.5. ZeroAvia UK
  • 5.6. NASA cryogenic
  • 5.7. Lange Research Germany
  • 5.8. Fuel Cell eVTOL
  • 5.9. Conclusions for PEM eVTOL

6. HYBRID ELECTRIC AIRCRAFT

  • 6.1. Overview
  • 6.2. Rolls Royce hybrid powertrains UK
  • 6.3. Hybrid aircraft
    • 6.3.1. eSAT "Silent Air Taxi Germany
    • 6.3.2. Faradair BEHA UK
    • 6.3.3. VoltAero France

7. JOURNEY USE-CASES & OPTIMIZATION: WHERE EVTOL HAS AN ADVANTAGE

  • 7.1. Will eVTOL Taxis Reduce Journey Time?
  • 7.2. eVTOL Multicopter vs Robotaxi: 10km Journey
  • 7.3. eVTOL vs Robotaxi: Example 10km Journey
  • 7.4. eVTOL Multicopter vs Robotaxi: 40km Journey
  • 7.5. eVTOL vs Robotaxi: Example 40km Journey
  • 7.6. Multicopter eVTOL vs Robotaxi: 100km Journey
  • 7.7. Vectored Thrust eVTOL vs Robotaxi: 100km Journey
  • 7.8. eVTOL vs Robotaxi: Example 100km Journey
  • 7.9. Important Factors for an Air Taxi Time Advantage
  • 7.10. Conclusions on Air Taxi Time Saving

8. IDTECHEX EVTOL COST ANALYSIS

  • 8.1. TCO Analysis: eVTOL Taxi $/50km Trip (Base Case)
  • 8.2. eVTOL vs Helicopter Operating Cost
  • 8.3. eVTOL Aircraft Upfront Cost
  • 8.4. eVTOL Operational Fuel Cost Savings
  • 8.5. The Value of Autonomous Flight
  • 8.6. TCO vs Helicopters Uber Air $/mile
  • 8.7. Sensitivity to Battery Cost and Performance
  • 8.8. Sensitivity to Upfront / Infrastructure Cost
  • 8.9. Sensitivity to Average Trip Length
  • 8.10. TCO Analysis: $/15km Trip: Multicopter eVTOL Design
  • 8.11. TCO $/15km Autonomous Trip: Multicopter vs Base case

9. EVTOL ARCHITECTURES

  • 9.1. World eVTOL Aircraft Directory
  • 9.2. Geographical Distribution of eVTOL Projects
  • 9.3. Key Players: eVTOL Air Taxi
  • 9.4. Main eVTOL Architectures
  • 9.5. eVTOL Architecture Choice
  • 9.6. eVTOL Multicopter / Rotorcraft
  • 9.7. Multicopter: Flight Modes
  • 9.8. Multicopter / Rotorcraft: Key Players Specifications
  • 9.9. Benefits / Drawbacks of Multicopters
  • 9.10. eVTOL Lift + Cruise
  • 9.11. Lift + Cruise: Flight Modes
  • 9.12. Lift + Cruise: Key Players Specifications
  • 9.13. Benefits / Drawbacks of Lift + Cruise
  • 9.14. Vectored Thrust eVTOL
  • 9.15. Vectored Thrust: Flight Modes
  • 9.16. eVTOL Vectored Thrust: Tiltwing
  • 9.17. Tiltwing: Key Player Specifications
  • 9.18. Benefits / Drawbacks of Tiltwing
  • 9.19. eVTOL Vectored Thrust: Tiltrotor
  • 9.20. Tiltrotor: Key Player Specifications
  • 9.21. Benefits / Drawbacks of Tiltrotor
  • 9.22. When will the First eVTOL Air Taxis Launch?
  • 9.23. Manned Air Taxi eVTOL Test Flights
  • 9.24. Unmanned Air Taxi eVTOL Model Test Flights
  • 9.25. Range and Cruise Speed: Electric eVTOL Designs
  • 9.26. Hover Lift Efficiency and Disc Loading
  • 9.27. Hover and Cruise Efficiency by eVTOL Architecture
  • 9.28. Complexity, Criticality & Cruise Performance
  • 9.29. Comparison of eVTOL Architectures

10. PROGRAMS SUPPORTING EVTOL DEVELOPMENT

  • 10.1. Uber Elevate - Joby Aviation
  • 10.2. Driving Air Taxi Progress: Uber Elevate
  • 10.3. Uber Elevate: Strategic OEM Vehicle Partnerships
  • 10.4. Uber Air Vehicle Requirements
  • 10.5. Uber Air Mission Profile
  • 10.6. U.S. Airforce eVTOL Support - Agility Prime
  • 10.7. US Airforce - Agility Prime
  • 10.8. Agility Prime: Advance Air Mobility Ecosystem
  • 10.9. NASA: Advanced Air Mobility National Campaign
  • 10.10. Groupe ADP eVTOL Test Area
  • 10.11. China's Unmanned Civil Aviation Zones
  • 10.12. UK's Future Flight Challenge
  • 10.13. Varon Vehicles: UAM in Latin America

11. BATTERIES FOR ELECTRIC AIRCRAFT

  • 11.1. Overview
  • 11.2. What is a Li-ion Battery?
  • 11.3. Electrochemistry Definitions
  • 11.4. The Battery Trilemma
  • 11.5. Battery Wish List for an eVTOL
  • 11.6. More Than One Type of Li-ion Battery
  • 11.7. eVTOL Battery Requirements
  • 11.8. Airbus Minimum Battery Requirement
  • 11.9. eVTOL Battery Range Calculation
  • 11.10. Aerospace Battery Pack Sizing
  • 11.11. Importance of Battery Pack Energy Density
  • 11.12. Importance of eVTOL Lift/Drag to Range
  • 11.13. Uber Air Proposed Battery Requirements
  • 11.14. Battery Size
  • 11.15. Batteries Packs: More than Just Cells
  • 11.16. Eliminating the Battery Module
  • 11.17. eVTOL Batteries: Specific Energy Vs Discharge Rates
  • 11.18. Battery500
  • 11.19. E-One Moli Energy Corp.
  • 11.20. Electric Power Systems (EPS): Li-ion Batteries
  • 11.21. Electric Power Systems (EPS)
  • 11.22. Amprius Inc: Silicon Anode
  • 11.23. Leclanche Energy Density Targets
  • 11.24. Moving on from Li-ion?
  • 11.25. Lithium-based Batteries Beyond Li-ion
  • 11.26. Li-ion Chemistry Snapshot: 2020, 2025, 2030
  • 11.27. Lithium-Sulfur Batteries (Li-S)
  • 11.28. Advantages of LSBs
  • 11.29. Li-sulfur energy density
  • 11.30. OXIS Energy: Lithium-Sulfur Batteries
  • 11.31. Lithium-Metal and Solid-State Batteries (SSB)
  • 11.32. Solid Energy Systems - Solid State Batteries
  • 11.33. Sion Power Corporation: Lithium-Metal Battery
  • 11.34. Cuberg: Lithium-Metal Batteries
  • 11.35. Battery Chemistry Comparison for eVTOL
  • 11.36. Battery Fast Charging
  • 11.37. Battery Swapping
  • 11.38. Distributed Battery Modules
  • 11.39. eVTOL Battery Cost
  • 11.40. Development Focus for eVTOL Batteries

12. ELECTRIC MOTORS NEEDED

  • 12.1. eVTOL Motor / Powertrain Requirements
  • 12.2. eVTOL Aircraft Motor Power Sizing
  • 12.3. eVTOL Power Requirement: kW Estimate
  • 12.4. eVTOL Power Requirement
  • 12.5. eVTOL Power Requirement: kW Estimate
  • 12.6. Electric Motors and Distributed Electric Propulsion
  • 12.7. eVTOL Number of Electric Motors
  • 12.8. Motor Sizing
  • 12.9. Electric Motors Designs
  • 12.10. Comparison of Motor Construction and Merits
  • 12.11. Brushless DC Motors (BLDC)
  • 12.12. BLDC Motors: Advantages, Disadvantages
  • 12.13. BLDC: Benchmarking
  • 12.14. Permanent Magnet Synchronous Motors (PMSM)
  • 12.15. PMSM: Advantages, Disadvantages
  • 12.16. PMSM: Benchmarking
  • 12.17. Axial Flux Motors
  • 12.18. Why Axial Flux Motors in eVTOL?
  • 12.19. Yoked or Yokeless Axial Flux
  • 12.20. Axial Flux Motors - Interesting Players
  • 12.21. List of Axial Flux Motor Players
  • 12.22. YASA
  • 12.23. Rolls-Royce / Siemens
  • 12.24. EMRAX
  • 12.25. ePropelled
  • 12.26. H3X
  • 12.27. MAGicALL
  • 12.28. Magnix
  • 12.29. MGM COMPRO
  • 12.30. SAFRAN
  • 12.31. Case-studies

13. SOLAR MANNED AIRCRAFT OPPORTUNITY

  • 13.1. Learning from solar drones
  • 13.2. Colloidal quantum dot spray on solar
  • 13.3. Multi-mode energy harvesting
  • 13.4. Harvesting technologies now and in future for air vehicles
  • 13.5. Mechanical with electrical energy independent vehicles
  • 13.6. Systems for EIEVs
  • 13.7. Energy positive large vehicles
  • 13.8. Solar vehicles replace diesel gensets