NEWS: 公告在东京证券交易所JASDAQ标准市场新上市

表纸
市场调查报告书

Micro-LED显示器 2021年-2031年:技术,商业化,机会,市场和参与者

Micro-LED Displays 2021-2031: Technology, Commercialization, Opportunity, Market and Players

出版商 IDTechEx Ltd. 商品编码 1000688
出版日期 内容资讯 英文 668 Slides
商品交期: 最快1-2个工作天内
价格
Micro-LED显示器 2021年-2031年:技术,商业化,机会,市场和参与者 Micro-LED Displays 2021-2031: Technology, Commercialization, Opportunity, Market and Players
出版日期: 2021年04月16日内容资讯: 英文 668 Slides
简介

标题
Micro-LED Displays 2021-2031:
技术,商业化,机会,市场和参与者

用于AR/VR/MR,电视,汽车,移动电话,可穿戴设备,桌子,笔记本电脑和大型视频显示器的微型LED,并分析技术,供应链,市场,参与者和机会。

"在接下来的十年中,C挑战和机遇推动著供应链的改组。"

在苹果公司于2014年收购LuxVue之后,微发光二极管(MicroLED或μLED)已成为一种吸引人的发光显示技术,并受到了各个行业参与者的追捧。MicroLED显示器提供了诸如宽色域,高亮度,低功耗,出色的稳定性和长寿命,宽视角,高动态范围,高对比度,快速刷新率,透明性,无缝连接,传感器集成能力等价值主张。。一些价值主张可以由LCD,OLED和QD等替代品提供,而开发MicroLED显示器的强大动力之一就是这些独特的价值主张。

           &NBSP ;的各种显示技术的价值主张。来源: IDTechEx

索尼推出了第一个MicroLED商业产品,即Crystal LED显示屏,该产品用Micr oLED取代了传统的封装LED 。这些小间距LED视频显示器面向目标市场,成本和价格都比现有产品贵得多。技术不成熟,成本壁垒和供应链不完善是MicroLED显示器大规模商业化的三个主要障碍。

在现有的LED产业和成熟的显示产业的推动下,新兴的传质领域是连接这两个产业的纽带,它们可以共同推动建立新的供应链。基于成本优势,目前液晶显示器制造正在向中国转移,而韩国正在主导OLED显示器,那些能够迅速做出反应以在成形供应链中占据重要位置的人将抓住下一个巨大的机会。该游戏向传统的LED供应商,显示器供应商,组件供应商,OEM,集成商开放,同时也欢迎能够带来技术创新,材料改进,设备支持和商业模式革新的新来者。

要做出战略决策,需要信息和见识。这些包括但不限于技术限制和功能,市场状态分析,供应链解释,参与者活动跟踪以及全球趋势理解。该报告将相应解决这些方面。

要制造MicroLED显示器,涉及许多技术和工艺,例如外延,光刻,芯片制造,基板去除,检查,质量转移,键合和互连,测试,维修,背板和驱动IC等。经过多年的发展,一些技术难题已得到解决,而新的挑战也摆在了我们面前。例如,几年前,主要的努力集中在芯片小型化,芯片设计和质量转移上。最近,越来越多的玩家意识到对所有过程的全面理解是关键。因此,越来越多的人将更多的精力放在诸如检查,维修,驾驶,图像改善,照明管理和大批量生产设备等技术上。该报告提供了所有主要技术选择,并进行了详细的介绍,分析和比较。它还显示了重要的参与者为市场提供了什么,以及原型/产品背后的技术。目标应用包括从AR/VR/MR等微型显示器到智能手机,电视等消费型中型显示器,再到大型视频公共显示器等大型显示器。相应的技术互不相同。对每种技术都有深刻的瞭解,就可以瞭解我们在哪里以及可以去往哪里。

随著参与者拥有各种技术,他们有不同的进入市场作为目标。在此报告中,我们重点分析了9个应用程序。它们是增强现实/混合现实(AR/MR),虚拟现实(VR),大型视频显示器,电视和显示器,汽车显示器,手机,智能手表和可穿戴设备,平板电脑和笔记本电脑以及新兴显示器。根据每种应用的发货单位,提供了十年市场预测。此外,还提供了一份应用程序路线图,其中考虑了每个应用程序的不同成熟度准备情况。

随著越来越多的厂商进入MicroLED行业,他们逐渐选择直接彼此合作或在大型网络中合作。几个供应链集群根据地理位置进行了重组,跨洲的协作越来越普遍。我们还在报告中显示了区域性的努力。

所有这些合作表明,全球化仍将是我们的未来趋势。从展示周期来看,我们还知道我们正处于合并与合并阶段,许多活动向我们展示了未来趋势的方向。但是,与此同时,诸如贸易战和COVID-19之类的重要国际事件使我们的决策更加困难,结果也更加复杂。我们还在报告中讨论了它们的影响,尤其是它们对供应链的影响。

报告目标:

技术评估

    与竞争技术相比,价值主张,优点和缺点。
  • 驱动力和动机
  • 当前状态
  • 技术突破
  • 解决这些问题的技术挑战和路线图。
  • 科研机构,大学和初创企业的活动

应用解释

  • 显示应用程序的路线图
  • 微型LED在这些应用中有多成熟和具有破坏性?
  • 在不久的将来我们可以期待的

市场格局,业务机会和供应链

  • 成本分析
  • 对供应链产生影响,并确定micro-LED显示器可能的供应链。
  • 市场预测
  • 区域努力
  • 合流,收购,合资,及部分nerships

玩家

  • 确定主要参与者,IP所有者和新兴企业。

谁应该读它:显示器制造商,LED供应商,材料供应商,研发组织,技术提供商,OEM/ODM,投资方,正在探索新机会的参与者。

从IDTechEx进行分析访问

所有报告购买都包括与专家分析师进行的长达30分钟的电话时间,该分析师将帮助您将报告中的关键发现与您要解决的业务问题联系起来。需要在购买报告后的三个月内使用。

目录

1。执行摘要

  • 1.1。该报告是关于什么的,谁应该阅读?
  • 1.2。实施例isting大微型/微LED显示通知
  • 1.3。对未来展示的期望
  • 1.4。OLED的状态
  • 1.5。展示QD的策略
  • 1.6。不同显示技术的特性比较
  • 1.7。横向比较阿里森
  • 1.8。为什么使用Micro-LED显示器?
  • 1.9。与LCD,OLED,QD相比,Micro-LED的价值主张
  • 1.10。识别核心价值主张的重要性
  • 1.11。LED显示屏的核心价值主张
  • 1.12。mic -o-LED的价值主张分析
  • 1.13。分辨率对应用的影响
  • 1.14。Micro-LED显示类型
  • 1.15。微型LED显示器的潜在应用
  • 1.16。矩阵分析
  • 1.17。XR应用程序的显示要求
  • 1.18。应用分析:增强/混合现实
  • 1.19。应用分析:虚拟现实
  • 1.20。应用分析:大型视频显示器
  • 1.21。应用分析:电视和监视器
  • 1.22。应用分析:车载显示器
  • 1.23。应用分析:手机
  • 1.24。应用分析:智能手表和可穿戴设备
  • 1.25。应用分析:平板电脑和笔记本电脑
  • 1.26。通过micro-LED技术实现的新兴显示器
  • 1.27。Micro-LED显示器的发展阶段
  • 1.28。Micro-LED应用路线图
  • 1.29。Micro-LED显示器制造流程图
  • 1.30。微型LED显示器技术
  • 1.31。复杂的micro-LED显示屏设计
  • 1.32。挑战微型显示器制造的过渡
  • 1.33。微型LED显示屏的最新成就
  • 1.34。微型LED显示器面临的挑战摘要
  • 1.35。RGB micro-LED芯片的问题
  • 1.36。Micro-LED性能摘要
  • 1.37。全彩REA补肾中药
  • 1.38。μLED的量子点
  • 1.39。区域发展:台灣
  • 1.40。区域发展:中国大陆
  • 1.41。区域发展:日本和韩国
  • 1.42。区域发展:欧洲
  • 1.43。区域发展:美国
  • 1.44。供应链状况
  • 1.45。供应链改组
  • 1.46。微型LED显示器的可能供应链
  • 1.47。供应链优势场景
  • 1.48。供应链受贸易战和冠状病毒影响

2.微型LED显示屏简介

  • 2.1。从传统的LED ...
  • 2.2。...到M□□icro-LED
  • 2.3。显示器LED的比较
  • 2.4。迷你LED和微型LED
  • 2.5。mini-LED,micro-LED和精细点位LED显示器之间的相关性
  • 2.6。从传统的LED到微型LED
  • 2.7。基于微型LED的显示类型
  • 2.8。AM micro-LED微型显示器的优势
  • 2.9。LED尺寸定义
  • 2.10。Micro-LED显示器:尺寸是重要特征
  • 2.11。Micro LED显示屏:超出尺寸
  • 2.12。更好的定义?
  • 2.13。Micro-LED显示面板结构

3。表位和芯片制造

  • 3.1。发光二极管简介
    • 3.1.1。□固态照明的istory
    • 3.1.2。什么是LED?
    • 3.1.3。LED如何工作?
    • 3.1.4。同质结与异质结
    • 3.1.5。采用封装技术的LED
    • 3.1.6。典型的LED和封装的LED尺寸
    • 3.1.7。比较SMD和COB之间阿里森
    • 3.1.8。显示器用COB
    • 3.1.9。全球主要LED公司名单及介绍
  • 3.2。外延
    • 3.2.1。III-V半导体的带隙与晶格常数
    • 3.2.2。商用LED芯片的材料
    • 3.2.3。绿隙
    • 3.2.4。外延衬底
    • 3.2.5。晶圆图案
    • 3.2.6。外延方法
    • 3.2.7。金属有机化学气相沉积
    • 3.2.8。MOCVD的优缺点
    • 3.2.9。E pitaxial增长需求
    • 3.2.10。Aixtron和Veeco提供的产品
    • 3.2.11。Veeco的产品
    • 3.2.12。工程底材
    • 3.2.13。晶圆均匀度1
    • 3.2.14。波长均匀度2
    • 3.2.15。晶圆不均匀性的解决方案
  • 3.3。芯片制造
    • 3.3.1。LED制作流程图
    • 3.3.2。典型的RGB LED设计
    • 3.3.3。LED芯片结构
    • 3.3.4。LED芯片结构图
    • 3.3.5。LE D芯片结构的未来
    • 3.3.6。外膜转移
    • 3.3.7。垂直GaN-LED的制造
  • 3.4。Micro-LED性能
    • 3.4.1。微型LED性能的影响
    • 3.4.2。微型LED的EQE与电流密度的关系
    • 3.4.3。效率下降
    • 3.4.4。温度稳定性
    • 3.4.5。波长偏移弯曲
    • 3.4.6。微型LED的尺寸依赖性
    • 3.4.7。RGB micro-LED的效率和要求
    • 3.4.8。表面重组
    • 3.4.9。侧壁效应
    • 3.4.10。侧壁钝化
    • 3.4.11。效率提升

4。转移和组装

  • 4.1.1。介绍
  • 4.1.2。传质和组装技术
  • 4.1.3。传质的R当量
  • 4.1.4。小芯片传质类型
  • 4.2。小芯片传质
    • 4.2.1。小芯片大规模装配简介
    • 4.2.2。小芯片传质方案
    • 4.2.3。传质技术比较
    • 4.2.4。不同公司转让技术的比较
    • 4.2.5。转移收益
    • 4.2.6。精选和放置
    • 4.2.7。弹性邮票概述
    • 4.2.8。转移流程
    • 4.2.9。弹性体邮票:利弊
    • 4.2.10。印模良率与缺陷密度
    • 4.2.11。micro-LED传质的关键技术
    • 4.2.12。底材处理
    • 4.2.13。弹性体印模附著力的动力学控制
    • 4.2.14。弹力邮票
    • 4.2.15。节距大小确定
    • 4.2.16。X-Celeprint
    • 4.2.17。μ LED制作
    • 4.2.18。蓝宝石基板上的LED
    • 4.2.19。通过微转移印刷制成的无源矩阵显示器
    • 4.2.20。PAS西伯矩阵亩; LED显示器制造
    • 4.2.21。通过微转移印刷制成的有源矩阵显示器
    • 4.2.22。有源矩阵和LED显示器的制造
    • 4.2.23。自动化微转移印刷机械
    • 4.2.24。毛细管固定转印
    • 4.2.25。Mikro Mesa:传输技术
    • 4.2.26。Mikro Mesa:传输流程图
    • 4.2.27。Mikro Mesa:转移邮票
    • 4.2.28。Mikro Mesa:转移设计目标
    • 4.2.29。PlayNitride:Micro-LED芯片的大规模传输
    • 4.2.30。PlayNitride:传质流程图
    • 4.2.31。维信诺
    • 4.2.32。工研院:芯片制造
    • 4.2.33。工研院的传质过程
    • 4.2.34。工研院的转学模块
    • 4.2.35。电动旋转阵列概述
    • 4.2.36。静电/电磁传递
    • 4.2.37。苹果/LuxVue
    • 4.2.38。VerLASE的大面积装配平台
    • 4.2.39。插入器的想法
    • 4.2.40。自组装
    • 4.2.41。流体组件介绍
    • 4.2.42。eLux:简介
    • 4.2.43。微型LED芯片阵列的制造
    • 4.2.44。eLux的流体组件
    • 4.2.45。eLux的展示原型
    • 4.2.46。eLux的供应链
    • 4.2.47。eLux的核心专利技术
    • 4.2.48。图像质量比较
    • 4.2.49。eLux技术的SWOT分析
    • 4.2.50。其他流体组装技术
    • 4.2.51。流体组装(物理):概述
    • 4.2.52。外星人
    • 4.2.53。外星人的流体自组装技术
    • 4.2.54。基于形状/几何匹配的自组装
    • 4.2.55。基于形状的自组装
    • 4.2.56。流体组件(电泳):概述
    • 4.2.57。LED的电泳定位
    • 4.2.58。PARC静电复印微组件印刷
    • 4.2.59。流体组件(表面能):概述
    • 4.2.60。表面张力驱动的流体组装机理
    • 4.2.61。基于表面张力的流体组件
    • 4.2.62。流体组件(磁性):概述
    • 4.2.63。磁辅助组装
    • 4.2.64。流体组件(光电化学):概述
    • 4.2.65。光电化学驱动的流体组件
    • 4.2.66。流体组件(组合):overvi EW
    • 4.2.67。芯片安装装置
    • 4.2.68。流体组装总结
    • 4.2.69。自我数组
    • 4.2.70。激光启用传输
    • 4.2.71。激光启用传输概述
    • 4.2.72。激光束要求
    • 4.2.73 。相干UVtransfer 3合1系统
    • 4.2.74。优衣库的并行激光启用传输技术
    • 4.2.75。QMAT的光束寻址释放技术
    • 4.2.76。Optovate的技术
    • 4.2.77。相干的方法
    • 4.2.78。东丽的产品
    • 4.2.79。Visionox的成就
    • 4.2.80。其他小芯片传质技术
    • 4.2.81。韩国机械材料研究所(KIMM)
    • 4.2.82。VueReal的墨盒打印技术
    • 4.2.83。VueReal的微型打印机
    • 4.2.84。Innovasonic的技术
    • 4.2.85。Rohinni的技术
    • 4.2.86。两步微转移技术
    • 4.2.87。使用可拉伸薄膜进行微转移
    • 4.2.88。微拾放
    • 4.2.89。光聚合物传质
  • 4.3。单片混合集成
    • 4.3.1。单片集成
    • 4.3.2。倒装芯片混合集成
    • 4.3.3。晶圆键合工艺
    • 4.3.4。单片混合集成结构
    • 4.3.5。通过选择性键合-脱键的选择性转移
    • 4.3.6。单片混合集成的优缺点
    • 4.3.7。整体混合集成的参与者
  • 4.4。多合一转账
    • 4.4.1。多合一C MOS驱动
    • 4.4.2。多合一CMOS驱动技术的优缺点
  • 4.5。完全单片集成
    • 4.5.1。完全单片集成的介绍
    • 4.5.2。JBD的整合技术
    • 4.5.3。鲁miode方法
    • 4.5.4。发光二极管方法,工艺细节
    • 4.5.5。结晶的温度性能
    • 4.5.6。Lumiode的威化饼
    • 4.5.7。奥斯坦多的方法
    • 4.5.8。奥斯坦多的QPI结构
  • 4.6。矽上的Ga N
    • 4.6.1。GaN-on-Si,用于各种应用市场
    • 4.6.2。GaN on Silicon Epi类型
    • 4.6.3。氮化矽上矽外延的挑战
    • 4.6.4。GaN-on-Si的价值主张
    • 4.6.5。蓝宝石和矽上的GaN
    • 4.6.6。GaN-on-Si方法
    • 4.6.7。成本比较:蓝宝石与硅
    • 4.6.8。GaN-on-Si是最终选择吗?
    • 4.6.9。在矽上使用GaN micro-LED的玩家
  • 4.7。纳米线
    • 4.7.1。C 2D和3D微型LED之间omparison
    • 4.7.2。矽衬底上的GaN外延
    • 4.7.3。Aledia流程
    • 4.7.4。Aledia的纳米线技术
    • 4.7.5。正面尺寸设备技术
    • 4.7.6。纳米线在矽衬底上的生长
    • 4.7.7。尺寸对纳米线效率的影响
    • 4.7.8。原生EL RGB纳米线
    • 4.7.9。适用于小型显示应用的3D技术
    • 4.7.10。通过纳米线和3D集成实现的微型显示器
    • 4.7.11。纳米线方法的未来
  • 4.8。绑定和互连
    • 4.8.1。分类
    • 4.8.2。概括
    • 4.8.3。引线键合和倒装芯片键合
    • 4.8.4。ACF粘接
    • 4.8.5。通过树脂回流互连
    • 4.8.6。微管互连
    • 4.8.7。微管制造
    • 4.8.8。微管传输和互连过程

5。测试

  • 5.1。测试技术
  • 5.2。检验中的挑战
  • 5.3。PL与EL测试
  • 5.4。Tesoro Scientific的EL测试
  • 5.5。基于相机的显微成像系统
  • 5.6。东丽的检查解决方案
  • 5.7。仪器系统的解决方案
  • 5.8。PL + AOI
  • 5.9。TTPCON的解决方案
  • 5.10。Ca萤光发光法用于测试
  • 5.11。滨松光电的PL测试
  • 5.12。测试趋势

6。缺陷管理

  • 6.1。介绍
  • 6.2。缺陷类型
  • 6.3。冗余
  • 6.4。修理
  • 6.5。拉斯维加斯ER微修整
  • 6.6。PlayNitride的SMAR技术
  • 6.7。QD的缺陷补偿

7。微型LED显示屏全彩色实现

  • 7.1.1。全彩实现策略
  • 7.1.2。直接RGB还是颜色转换器?
  • 7.1.3。RGB微型LED与蓝色微型LED + QD
  • 7.2。彩色滤光片
    • 7.2.1。彩色滤光片
    • 7.2.2。彩色滤光片处理流程:黑矩阵处理
    • 7.2.3。滤色器处理流程:RGB处理
  • 7.3。光学镜片合成
    • 7.3.1。通过光学镜片合成实现全彩
    • 7.3.2。投影机的全彩实现
  • 7.4。萤光粉可用于micro-LED显示器吗?
    • 7.4.1。简介萤光粉小号
    • 7.4.2。LED中磷光体的要求
    • 7.4.3。萤光粉材料表
    • 7.4.4。搜索窄的FWHM红色萤光粉
    • 7.4.5。常见和新兴的发红光磷光体
    • 7.4.6。红色萤光粉选项:GE的TriGainTM
    • 7.4.7。TriGain的可靠性
    • 7.4.8。GE的窄带红色萤光粉的商业开发
    • 7.4.9。小型PFS萤光粉
    • 7.4.10。红色萤光粉选项:Sr [LiAl3N4]:Eu2 +(SLA)红色萤光粉
    • 7.4.11。普通RGY萤光粉的热稳定性
    • 7.4.12。窄带绿色萤光粉
    • 7.4.13。高性能有机萤光粉
    • 7.4.14。东丽有机色彩转换膜
    • 7.4.15。东丽色彩转换膜的色彩覆盖率
    • 7.4.16。东丽色彩转换膜的稳定性
    • 7.4.17。东丽色彩转换膜的响应时间特性
    • 7.4.18。萤光粉供应商
  • 7.5。量子点法
    • 7.5.1。量子点介绍 < li> 7.5.2。显示器中QD的价值主张
    • 7.5.3。用于micro-LED显示器的量子点
    • 7.5.4。QD与磷光体:粒径
    • 7.5.5。QD与磷光体:响应时间
    • 7.5.6。QD与萤光粉:颜色可调性
    • 7.5.7。QD与磷光体:稳定性
    • 7.5.8。QD与萤光粉:半高宽
    • 7.5.9。QD转换器的优缺点
    • 7.5.10。微型LED显示器的QD基本要求
    • 7.5.11。效率与泄漏之间的权衡
    • 7.5.12。效率下降和红移
    • 7.5.13。QD层的吸收厚度
    • 7.5.14。具有QD的显示结构
    • 7.5.15。偏光片,短波滤光片和其他附加层?
    • 7.5.16。高蓝色吸收性QD材料
    • 7.5.17。用于LED显示屏的QD转换器
    • 7.5.18。用于彩色滤光片的喷墨打印
    • 7.5.19。喷墨印刷QD色彩转换器
    • 7.5.20。固化方式
    • 7.5.21。喷墨打印QD
    • 7.5.22。DIC的Wˉˉ ORK
    • 7.5.23。光刻工艺
    • 7.5.24。QD光刻胶制造
    • 7.5.25。光刻胶方法
    • 7.5.26。连续图案化各种尺寸的红色和绿色QD
    • 7.5.27。QD光刻胶
    • 7.5.28。Quantum- DOTS颜色转换层
    • 7.5.29。气溶胶喷射技术实现基于量子点的微型LED显示器的全彩色发射
    • 7.5.30。电动流体喷射印刷
    • 7.5.31。台灣纳米晶体:光图案量子点为&万亩; LED DISPLA YS
  • 7.6。量子阱方法
    • 7.6.1。量子阱
    • 7.6.2。结论

8。灯光管理

  • 8.1。灯光管理方法摘要
  • 8.2。优化电流分布的层可更好地提取光
  • 8.3。InfiniLED的提高光提取效率的方法
  • 8.4。捕获光输出的方法
  • 8.5。微折射光学阵列具有更好的方向性

9。背飞和驾驶

  • 9.1。Micro-LED显示器的背板和驱动选项
  • 9.2。金属氧化物半导体场效应晶体管简介
  • 9.3。薄膜晶体管简介
  • 9.4。互补金属氧化物半导体图标电感器简介
  • 9.5。背板简介
  • 9.6。TFT材料
  • 9.7。OLED像素驱动
  • 9.8。LCD像素结构
  • 9.9。TFT背板
  • 9.10。无源矩阵寻址
  • 9.11。被动驱动结构
  • 9.12。活动矩阵寻址
  • 9.13。PM和AM寻址之间的比较
  • 9.14。晶体管-微型LED连接设计
  • 9.15。驱动微型LED
  • 9.16。脉冲宽度调制
  • 9.17。PAM与PWM
  • 9.18。驱动电压
  • 9.19。驾驶与EQE
  • 9.20。RGB驱动器
  • 9.21。带有LTPS TFT背板的有源矩阵微型LED
  • 9.22。结论

10。图像质量改进,功耗降低和其他设计

  • 10.1。图像质量IMPRO vement
    • 10.1.1。基于TFT的图像均匀性问题
    • 10.1.2。LED分档
    • 10.1.3。驱动设计
    • 10.1.4。光学补偿
    • 10.1.5。驱动补偿
  • 10.2。降低功耗
      < li> 10.2.1。LED和TFT
    • 10.2.2。驱动模式优化
    • 10.2.3。背板优化

11。迷你显示屏

  • 11.1。Mini-LED显示器配置
  • 11.2。mini-LED扮演什么样的角色? 11.3。MiniLED,到2021年真的有希望吗?
  • 11.4。迷你LED显示器的趋势

12。成本分析

  • 12.1。成本基础
  • 12.2。Micro-LED成本与管芯尺寸的关系
  • 12.3。成本假设
  • 12.4。成本分析
  • 12.5。微型LED的经济学:成本下降

13。市场分析

  • 13.1。预测方法和假设
  • 13.2。出货单位市场预测
  • 13.3。2026和2031应用市场份额
  • 13.4。市场预测分析
  • 13.5。晶圆价值预测

14。伙伴关系,合并,收购和合资企业

  • 14.1。显示周期
  • 14.2。好处
  • 14.3。晶元和利雅德
  • 14.4。PlayNitride和RIT显示
  • 14.5。康佳&重庆凉山工业投资有限公司,康佳&LianTronics
  • 14.6。京东方与罗欣尼
  • 14.7。Lextar和X显示器
  • 14.8。JDI&glo,京瓷&glo
  • 14.9。首尔半导体与Viosys
  • 14.10。Kulicke&Soffa和Uniqarta

15。玩家和案例研究

  • 15.1.1。本报告中讨论的球员
  • 15.2。阿列迪亚
    • 15.2.1。Aledia:简介
    • 15.2.2。可扩展至更大的矽基板
    • 15.2.3。Aledia的准无晶圆厂业务国防部埃尔
    • 15.2.4。Aledia的WireLED显示屏的集成过程
    • 15.2.5。纳米线的晶圆均匀性
    • 15.2.6。WireLED的颜色转换
    • 15.2.7。互连选项
    • 15.2.8。Aledia的显示模块
  • 1 5.3。ALLOS半导体
    • 15.3.1。ALLOS半导体:简介
    • 15.3.2。应变管理和排放均匀性
    • 15.3.3。应变管理
    • 15.3.4。奥图电子
  • 15.4。苹果
    • 15。4.1。苹果
    • 15.4.2。苹果新的Micro-LED小芯片架构
    • 15.4.3。友达光电
  • 15.5。友达光电
    • 15.5.1。友达液晶电视LTPS TFT驱动micro-LED显示器
  • 15.6。京东方
    • 15.6.1。加快微型LED和微型LED显示屏的速度
    • 15.6.2。京东方迷你LED背光
    • 15.6.3。京东方迷你LED显示屏
  • 15.7。CEA-Leti
    • 15.7.1。CEA-Leti:简介
    • 15.7.2。杂交技术演示
    • 15.7.3 。显示效果
    • 15.7.4。杂交微显示器的制造工艺
    • 15.7.5。整体式微显示器的制造工艺
    • 15.7.6。单片显示器制造的新方法
  • 15.8。成都威斯塔光电
    • 15.8.1。成都威斯塔光电
  • 15.9。EpiPix
    • 15.9.1。EpiPix简介
    • 15.9.2。EpiPix的技术
  • 15.10。格洛
    • 15.10.1。glo介绍
    • 15.10.2。Glo的技术
    • 15.10.3。Glo的原型
  • 15.11。工研院
    • 15.11.1。工研院开发微型LED
    • 15.11.2。工研院的进展
    • 15.11.3。工研院的产品
    • 15.11.4。微型LED器件characte ristics
    • 15.11.5。可靠性测试
    • 15.11.6。工研院的MicroLED显示器
    • 15.11.7。工研院的透明MicroLED显示器
    • 15.11.8。工研院
  • 15.12。玉鸟展示
    • 15.12.1。玉鸟展示:简介
    • 15.12.2。现有的倒装芯片混合集成技术
    • 15.12.3。装置制造
    • 15.12.4。设备结构与架构
    • 15.12.5。用于JBD微型显示器的微型LED
    • 15.12.6。JBD的单色AM微型LED微型显示器
    • 15.12.7。带有定向发射的AM micro-LED
    • 15.12.8。应用:3色LED投影仪
    • 15.12.9。高PPI AM微型LED微型显示器
    • 15.12.10。AM micro-LED芯片
    • 15.12.11。适用于AR/VR的原型
  • 15.13。日本显示器公司(JDI)
    • 15.13.1。JDI的原型
  • 15.14。康佳
    • 15.14.1。康佳在Micro-LED显示器上的努力
    • 15.14.2。康佳的智能手表
  • 15.15。京瓷时代
    • 15.15.1。京瓷:高PPI微型LED显示屏
    • 15.15.2。京瓷:展示设计
  • 15.16。LG
    • 15.16.1。微型LED标牌
  • 15.17。流明
    • 15.17.1。流明的micro-LED显示器
    • 15.17.2。流明的原型
  • 15.18。发光二极管
    • 15.18.1。Lumiode:简介
    • 15.18.2。发光二极管方法,工艺细节
    • 15.18.3。Lumiode的micro-LED性能
    • 15.18.4。Lumiode的设备绩效E
  • 15.19。微氮化物
    • 15.1.9.1 微量氮化物:简介
    • 15.19.2。Micro Nitride的技术
  • 15.20。米克罗·梅萨(Mikro Mesa)
    • 15.20.1。关于米克罗·梅萨(Mikro Mesa)
    • 15.20.2。Mikro Mesa的微型LED < li> 15.20.3。Mikro Mesa:当前注入
  • 15.21。南京中电熊猫FPD技术
    • 15.21.1。中电熊猫简介
    • 15.21.2。Micro LED与熊猫的氧化物发展
  • 15.22。普莱西
    • 15.2 2.1。普莱西:矽基氮化镓
    • 15.22.2。Plessey的显示器开发路线图
    • 15.22.3。LED制造
    • 15.22.4。像素发展
    • 15.22.5。矽上的RGB GaN
    • 15.22.6。普莱西的核心发展
    • 15.22.7。原型类型
  • 15.23。氮化物
    • 15.23.1。PlayNitride:简介
    • 15.23.2。PlayNitride在micro-LED生态系统中的作用
    • 15.23.3。PlayNitride时间轴
    • 15.23.4。PlayNitride的应用市场
    • 15.23.5。P ixeLED显示结构
    • 15.23.6。PixeLED MatrixTM平铺显示技术
    • 15.23.7。PlayNitride:原型
  • 15.24。罗欣尼
    • 15.24.1。罗欣尼介绍
    • 15.24.2。技术
    • 15.24.3。生产利益示例
  • 15.25。三星
    • 15.25.1。三星离开液晶业务
    • 15.25.2。墙与窗
    • 15.25.3。LED影院屏
    • 15.25.4。三星在CES 2021上的MicroLED主屏幕
    • 15.25.5。三成的QNED
    • 15.25.6。三星电视的价格
    • 15.25.7。RGB单芯片
  • 15.26。萨弗勒克斯
    • 15.26.1。Saphlux:简介
    • 15.26.2。NPQD技术
  • 15.27。锋利的
    • 15.27.1。夏普:因特罗德,减税
    • 15.27.2。矽显示器的工艺流程
    • 15.27.3。显示驱动器
    • 15.27.4。单片微型LED阵列
    • 15.27.5。全彩实现
    • 15.27.6。夏普制造的原型
    • 15.27.7。新的分拆
  • 15.28。了索尼
    • 15.28.1。索尼:初步努力
    • 15.28.2。索尼:可扩展的显示系统
    • 15.28.3。索尼:精确平铺
    • 15.28.4。索尼:微型LED
    • 15.28.5。索尼:视角优势
    • 15.28.6。索尼:采用微型IC的有源矩阵驱动
    • 15.28.7。索尼:HDR可再现性
    • 15.28.8。索尼:经营策略
  • 15.29。斯坦(深圳)科技
    • 15.29.1。斯坦科技
  • 15.30。TCL/CSOT
    • 15 .30.1。电影院墙
    • 15.30.2。基于TFT背板的micro-LED显示器
    • 15.30.3。TCL CSOT Mini LED路线图
  • 15.31。维信诺
    • 15.31.1。Visionox的计划
  • 15.32。VueReal
  • 15.33。VueReal:简介
  • 15.34。VueReal:高效微型LED
  • 15.35。VueReal:检查
  • 15.36。VueReal:固化
  • 15.37。VueReal:原型

16。附录

  • 16.1。颜色和像素
  • 16.2。什么是分辨率?
  • 16.3。像素间距和填充系数
  • 16.4。情商和智商
  • 16.5。3D色彩量
  • 16.6。液晶面板结构
  • 16.7。有源矩阵LCD结构
目录
Product Code: ISBN 9781913899424

Title:
Micro-LED Displays 2021-2031:
Technology, Commercialization, Opportunity, Market and Players

Micro-LEDs for AR/VR/MR, TVs, automotive, mobile phones, wearables, tables, laptops and large video displays, with analysis of technology, supply chain, market, players and opportunities.

"Challenges and opportunities with the drive to reshuffle the supply chain in the next decade."

After acquisition of LuxVue by Apple in 2014, micro-light emitting diode (MicroLED, or μLED) has become an attracting emissive display technology and pursued by players from various industries. MicroLED displays deliver value propositions such as wide colour gamut, high luminance, low power consumption, excellent stability and long lifetime, wide view angle, high dynamic range, high contrast, fast refresh rate, transparency, seamless connection, sensor integration capability, etc. Some of the value propositions can be provided by alternatives such as LCD, OLED and QD, while one of the strong drivers to develop MicroLED displays are these unique value propositions.

            Value propositions of various display technologies. Source: IDTechEx

The first MicroLED commercial product, the Crystal LED display, was launched by Sony, which replaced the traditional packaged LEDs by MicroLED. These small-pitch LED video displays target the to-B market and both the costs and prices are far more expensive than what already exist. Technology immaturity, cost barriers and supply chain incompletion are three major hurdles in large-scale commercialization for MicroLED displays.

With the existing LED industry and the mature display industry, the emerging mass transfer sector is the link to bridge these two industries, and they together can be the enabler to establish a new supply chain. With the basis that current LCD manufacturing is shifting to China due to cost advantage and South Korea is dominating OLED displays, those who can react quick enough to make an important position in the shaped supply chain will seize the next big opportunity. The game is open to conventional LED suppliers, display vendors, component providers, OEMs, integrators, and also welcomes newcomers that can bring technology innovation, material improvement, equipment support, and business model revolution.

To make strategic decisions, both information and insights are required. These include, but are not limited to, technology limitations and capabilities, market status analysis, supply chain interpretation, player activity tracking, and global trend understanding. This report will tackle these aspects accordingly.

To fabricate a MicroLED display, many technologies and processes are involved, such as epitaxy, photolithography, chip fabrication, substrate removal, inspection, mass transfer, bonding and interconnection, testing, repair, backplane, and drive IC, etc. After years of development, some technology difficulties have been solved, while new challenges are placed in front of us. For instance, several years ago, the major efforts were concentrated in die miniaturization, chip design and mass transfer. Recently, more and more players realize a complete understanding of all the processes is the key. Therefore, an increasing number of people put more effort also on technologies such as inspection, repair, driving, image improvement, light management, and high-volume production equipment. This report provides all the major technology choices with detailed introduction, analysis, and comparison. It also shows what important players have offered to the market, and the technologies behind the prototypes/products. The targeted applications cover from micro-displays such as AR/VR/MR, to consumer middle-sized displays like smart phones, TVs, to huge displays, e.g., large video public displays. The corresponding technologies vary from each other. With a deep understanding of each technology, it is possible to understand where we are and where we can go.

With players holding various technologies, they have different entry markets to target. In this report, we have focused on 9 applications to analyse. They are augmented/mixed reality (AR/MR), virtual reality (VR), large video displays, TVs and monitors, automotive displays, mobile phones, smart watches and wearables, tablets and laptops, and emerging displays. A ten-year market forecast is provided based on shipment unit for each application. In addition, an application roadmap is offered with a consideration of different maturity readiness of each application.

As more and more players are plunging into the MicroLED industry, they gradually choose to work with each other directly or in a large network. Several supply chain clusters are formed based on geography, with cross-continental collaboration increasingly common. We also show regional efforts in the report.

All these collaborations indicate that globalization continues to be our future trend. From the display cycle we also know that we are at the merge & consolidation stage, and lots of activities show us the direction of future trends. However, in the meantime, important international events such as the trade war and COVID-19 make our decisions more difficult, resulting in a more complicated picture. We also discussed their impacts in the report, especially their influence on the supply chain.

Objectives of the report:

Technology assessment

  • Value propositions, benefits and drawbacks compared with competing technologies.
  • Drivers and motivations
  • Current status
  • Technology breakthroughs
  • Technology challenges and roadmap to tackle these issues.
  • Activities of research institutes, universities, and start-ups

Application interpretation

  • Roadmap for display applications
  • How mature and disruptive are micro-LEDs for these applications?
  • What we can expect in the near future

Market landscape, business opportunity and supply chains

  • Cost analysis
  • Impact on the supply chain and identify possible supply chain for micro-LED displays.
  • Market forecast
  • Regional efforts
  • Merges, acquisitions, joint ventures, and partnerships

Players

  • Identify key players, IP owners and emerging start-ups.

Who should read it: Display makers, LED suppliers, material suppliers, R&D organizations, technology providers, OEMs/ODMs, investors, players who are exploring new opportunities.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. What is the report about and who should read it?
  • 1.2. Existing large mini-/micro-LED display announcements
  • 1.3. Expectation of future displays
  • 1.4. Status of OLED
  • 1.5. Strategies of QDs in display
  • 1.6. Characteristic comparison of different display technologies
  • 1.7. Horizontal comparison
  • 1.8. Why Micro-LED Displays?
  • 1.9. Micro-LED value propositions compared with LCD, OLED, QD
  • 1.10. Importance of identifying core value propositions
  • 1.11. Core value propositions of μLED displays
  • 1.12. Analysis of micro-LED's value propositions
  • 1.13. Influence of resolution for applications
  • 1.14. Micro-LED display types
  • 1.15. Potential applications for micro-LED displays
  • 1.16. Matrix analysis
  • 1.17. Display requirements for XR applications
  • 1.18. Application analysis: Augmented/mixed reality
  • 1.19. Application analysis: Virtual reality
  • 1.20. Application analysis: Large video displays
  • 1.21. Application analysis: Televisions and monitors
  • 1.22. Application analysis: Automotive displays
  • 1.23. Application analysis: Mobile phones
  • 1.24. Application analysis: Smart watches and wearables
  • 1.25. Application analysis: Tablets and laptop
  • 1.26. Emerging displays enabled by micro-LED technology
  • 1.27. Micro-LED display development stage
  • 1.28. Micro-LED application roadmap
  • 1.29. Micro-LED display fabrication flowchart
  • 1.30. Technologies of micro-LED displays
  • 1.31. Complex micro-LED display design
  • 1.32. Challenge transition for micro-display manufacturing
  • 1.33. Current achievements of micro-LED displays
  • 1.34. Summary of challenges for micro-LED displays
  • 1.35. Issues with RGB micro-LED chips
  • 1.36. Micro-LED performance summary
  • 1.37. Full colour realization
  • 1.38. Quantum dots for μLEDs
  • 1.39. Regional development: Taiwan
  • 1.40. Regional development: Mainland China
  • 1.41. Regional development: Japan & Korea
  • 1.42. Regional development: Europe
  • 1.43. Regional development: US
  • 1.44. Supply chain status
  • 1.45. Supply chain reshuffle
  • 1.46. Possible supply chain for micro-LED displays
  • 1.47. Scenarios of supply chain dominance
  • 1.48. Supply chain influenced by trade war and coronavirus

2. INTRODUCTION TO MICRO-LED DISPLAY

  • 2.1. From traditional LEDs...
  • 2.2. ...to Micro-LEDs
  • 2.3. Comparisons of LEDs for displays
  • 2.4. Mini-LEDs and Micro-LEDs
  • 2.5. Correlations between mini-LED, micro-LED and fine pitch LED displays
  • 2.6. From traditional LEDs to micro-LED
  • 2.7. Display types based on micro-LEDs
  • 2.8. Advantages of AM micro-LED micro-displays
  • 2.9. LED size definitions
  • 2.10. Micro-LED displays: size is an important feature
  • 2.11. Micro LED displays: beyond the size
  • 2.12. A better definition?
  • 2.13. Micro-LED display panel structure

3. EPITAXY AND CHIP MANUFACTURING

  • 3.1. Introduction to light-emitting diodes
    • 3.1.1. History of solid-state lighting
    • 3.1.2. What is an LED?
    • 3.1.3. How does an LED work?
    • 3.1.4. Homojunction vs. heterojunction
    • 3.1.5. LEDs by package technique
    • 3.1.6. Typical LED and packaged LED sizes
    • 3.1.7. Comparison between SMD and COB
    • 3.1.8. COB for displays
    • 3.1.9. List of global major LED companies with introduction
  • 3.2. Epitaxy
    • 3.2.1. Bandgap vs. lattice constant for III-V semiconductors
    • 3.2.2. Materials for commercial LED chips
    • 3.2.3. Green gap
    • 3.2.4. Epitaxy substrate
    • 3.2.5. Wafer patterning
    • 3.2.6. Epitaxy methods
    • 3.2.7. Metal organic chemical vapor deposition
    • 3.2.8. Pros and cons of MOCVD
    • 3.2.9. Epitaxial growth requirement
    • 3.2.10. Offering from Aixtron and Veeco
    • 3.2.11. Veeco's offering
    • 3.2.12. Engineered substrate
    • 3.2.13. Wafer uniformity 1
    • 3.2.14. Wavelength uniformity 2
    • 3.2.15. Solutions for wafer nonuniformity
  • 3.3. Chip manufacturing
    • 3.3.1. LED fabrication flowchart
    • 3.3.2. Typical RGB LED designs
    • 3.3.3. LED chip structures
    • 3.3.4. LED chip structure illustrations
    • 3.3.5. Future of the LED chip structure
    • 3.3.6. Epi-film transfer
    • 3.3.7. Fabrication of vertical GaN-LEDs
  • 3.4. Micro-LED Performances
    • 3.4.1. Influence of micro-LED performance
    • 3.4.2. EQE of micro-LED versus current density
    • 3.4.3. Efficiency droop
    • 3.4.4. Temperature stability
    • 3.4.5. Bowing of wavelength shift
    • 3.4.6. Size dependence of micro-LEDs
    • 3.4.7. Efficiencies and requirement of RGB micro-LEDs
    • 3.4.8. Surface recombination
    • 3.4.9. Sidewall effect
    • 3.4.10. Side wall passivation
    • 3.4.11. Efficiency improvement

4. TRANSFER AND ASSEMBLY

  • 4.1.1. Introduction
  • 4.1.2. Mass transfer and assembly technologies
  • 4.1.3. Requirements of mass transfer
  • 4.1.4. Chiplet mass transfer types
  • 4.2. Chiplet Mass Transfer
    • 4.2.1. Introduction to chiplet mass assembly
    • 4.2.2. Chiplet mass transfer scenario
    • 4.2.3. Comparison of mass transfer technologies
    • 4.2.4. Comparison of transfer technologies of different companies
    • 4.2.5. Transfer yield
    • 4.2.6. Fine pick and place
    • 4.2.7. Overview of Elastomeric stamp
    • 4.2.8. Transfer process flow
    • 4.2.9. Elastomeric stamp: pros and cons
    • 4.2.10. Stamp yield vs. defect density
    • 4.2.11. Key technologies for micro-LED mass transfer
    • 4.2.12. Substrate treatment
    • 4.2.13. Kinetic control of the elastomeric stamp adhesion
    • 4.2.14. Elastomeric stamp
    • 4.2.15. Pitch size determination
    • 4.2.16. X-Celeprint
    • 4.2.17. μLED fabrication
    • 4.2.18. μLEDs from sapphire substrate
    • 4.2.19. Passive matrix displays made by micro-transfer printing
    • 4.2.20. Passive matrix μLED display fabrication
    • 4.2.21. Active matrix displays made by micro-transfer printing
    • 4.2.22. Active matrix μLED display fabrication
    • 4.2.23. Automated micro-transfer printing machinery
    • 4.2.24. Capillary-assisted transfer printing
    • 4.2.25. Mikro Mesa: Transfer technology
    • 4.2.26. Mikro Mesa: Transfer flowchart
    • 4.2.27. Mikro Mesa: Transfer stamp
    • 4.2.28. Mikro Mesa: Transfer design target
    • 4.2.29. PlayNitride: Mass transfer for micro-LED chips
    • 4.2.30. PlayNitride: Mass transfer flowchart
    • 4.2.31. Visionox
    • 4.2.32. ITRI: Chip fabrication
    • 4.2.33. ITRI's mass transfer process
    • 4.2.34. ITRI's transfer module
    • 4.2.35. Overview of electrostatic array
    • 4.2.36. Electrostatic/electromagnetic transfer
    • 4.2.37. Apple/LuxVue
    • 4.2.38. VerLASE's large area assembly platform
    • 4.2.39. Interposer idea
    • 4.2.40. Self-assembly
    • 4.2.41. Introduction of fluidic-assembly
    • 4.2.42. eLux: introduction
    • 4.2.43. Fabrication of micro-LED chip array
    • 4.2.44. eLux's fluidic assembly
    • 4.2.45. eLux's display prototypes
    • 4.2.46. eLux's supply chain
    • 4.2.47. eLux's core patent technology
    • 4.2.48. Image quality comparison
    • 4.2.49. SWOT analysis of eLux's technology
    • 4.2.50. Other fluidic assembly techniques
    • 4.2.51. Fluidic assembly (physical): overview
    • 4.2.52. Alien
    • 4.2.53. Alien's fluidic self-assembly technology
    • 4.2.54. Self-assembly based on shape/geometry matching
    • 4.2.55. Shape-based self-assembly
    • 4.2.56. Fluidic assembly (electrophoretic): overview
    • 4.2.57. Electrophoretic positioning of LEDs
    • 4.2.58. PARC's xerographic micro-assembly Printing
    • 4.2.59. Fluidic-assembly (surface energy): overview
    • 4.2.60. Mechanism of surface-tension-driven fluidic assembly
    • 4.2.61. Surface tension based fluidic assembly
    • 4.2.62. Fluidic-assembly (magnetic): overview
    • 4.2.63. Magnetically-assisted assembly
    • 4.2.64. Fluidic-assembly (photoelectrochemical): overview
    • 4.2.65. Photoelectrochemically driven fluidic-assembly
    • 4.2.66. Fluidic-assembly (combination): overview
    • 4.2.67. Chip mounting apparatus
    • 4.2.68. Summary of fluidic assembly
    • 4.2.69. SelfArray
    • 4.2.70. Laser enabled transfer
    • 4.2.71. Overview of laser enabled transfer
    • 4.2.72. Laser beam requirement
    • 4.2.73. Coherent UVtransfer 3in1 System
    • 4.2.74. Uniqarta's parallel laser-enabled transfer technology
    • 4.2.75. QMAT's beam-addressed release technology
    • 4.2.76. Optovate's technology
    • 4.2.77. Coherent's approach
    • 4.2.78. Toray's offering
    • 4.2.79. Visionox's achievement
    • 4.2.80. Other chiplet mass transfer techniques
    • 4.2.81. Korean Institute of Machinery and Materials (KIMM)
    • 4.2.82. VueReal's cartridge printing technique
    • 4.2.83. VueReal's micro printer
    • 4.2.84. Innovasonic's technology
    • 4.2.85. Rohinni's technology
    • 4.2.86. Two-step micro-transfer technology
    • 4.2.87. Micro-transfer using a stretchable film
    • 4.2.88. Micro-pick-and-place
    • 4.2.89. Photo-polymer mass transfer
  • 4.3. Monolithic Hybrid Integration
    • 4.3.1. Monolithic integration
    • 4.3.2. Flip-chip hybrid integration
    • 4.3.3. Wafer bonding process
    • 4.3.4. Monolithic hybrid integration structure
    • 4.3.5. Selective transfer by selective bonding-debonding
    • 4.3.6. Pros and cons of monolithic hybrid integration
    • 4.3.7. Players on monolithic hybrid integration
  • 4.4. All-In-One Transfer
    • 4.4.1. All-in-one CMOS driving
    • 4.4.2. Pros and cons of all-in-one CMOS driving technique
  • 4.5. Fully Monolithic Integration
    • 4.5.1. Introduction of fully monolithic integration
    • 4.5.2. JBD's integration technology
    • 4.5.3. Lumiode approach
    • 4.5.4. Lumiode approach, process details
    • 4.5.5. Temperature performance for the crystallization
    • 4.5.6. Wafer from Lumiode
    • 4.5.7. Ostendo's approach
    • 4.5.8. Ostendo's QPI structure
  • 4.6. GaN on Silicon
    • 4.6.1. GaN-on-Si for various application markets
    • 4.6.2. GaN on silicon epi types
    • 4.6.3. Challenges of GaN-on-Silicon epitaxy
    • 4.6.4. Value propositions of GaN-on-Si
    • 4.6.5. GaN on sapphire vs. on silicon
    • 4.6.6. GaN-on-Si approach
    • 4.6.7. Cost comparison: sapphire vs silicon
    • 4.6.8. Is GaN-on-Si the ultimate option?
    • 4.6.9. Players working on GaN micro-LEDs on silicon
  • 4.7. Nanowires
    • 4.7.1. Comparison between 2D and 3D micro-LEDs
    • 4.7.2. GaN epitaxy on silicon substrate
    • 4.7.3. Aledia process flow
    • 4.7.4. Aledia's nanowire technology
    • 4.7.5. Front size device technology
    • 4.7.6. Nanowires growth on silicon substrate
    • 4.7.7. Size influence on nanowire's efficiency
    • 4.7.8. Native EL RGB nanowires
    • 4.7.9. 3D technology for small-display applications
    • 4.7.10. Micro-display enabled by nanowires and 3D integration
    • 4.7.11. Future of nanowire approach
  • 4.8. Bonding and interconnection
    • 4.8.1. Classification
    • 4.8.2. Summary
    • 4.8.3. Wire bonding and flip chip bonding
    • 4.8.4. ACF bonding
    • 4.8.5. Interconnection by resin reflow
    • 4.8.6. Microtube interconnections
    • 4.8.7. Microtube fabrication
    • 4.8.8. Transfer and interconnection process by microtubes

5. TESTING

  • 5.1. Testing techniques
  • 5.2. Challenges in inspection
  • 5.3. PL vs. EL testing
  • 5.4. EL test by Tesoro Scientific
  • 5.5. Camera-based microscopic imaging system
  • 5.6. Inspection solution by Toray
  • 5.7. Instrument System's solution
  • 5.8. PL+AOI
  • 5.9. TTPCON's solution
  • 5.10. Cathodoluminescence used for testing
  • 5.11. Hamamatsu Photonics' PL testing
  • 5.12. Trends of testing

6. DEFECT MANAGEMENT

  • 6.1. Introduction
  • 6.2. Defect types
  • 6.3. Redundancy
  • 6.4. Repair
  • 6.5. Laser micro trimming
  • 6.6. PlayNitride's SMAR Tech
  • 6.7. Defect compensation by QDs

7. MICRO-LED DISPLAY FULL-COLOUR REALIZATION

  • 7.1.1. Strategies for full colour realization
  • 7.1.2. Direct RGB or color converters?
  • 7.1.3. RGB micro-LEDs vs. blue micro-LED + QD
  • 7.2. Colour filters
    • 7.2.1. Colour filters
    • 7.2.2. Colour filter process flow: black matrix process
    • 7.2.3. Colour filter process flow: RGB process
  • 7.3. Optical lens synthesis
    • 7.3.1. Full colour realized by optical lens synthesis
    • 7.3.2. Full colour realization for projectors
  • 7.4. Do phosphors work for micro-LED displays?
    • 7.4.1. Introduction to phosphors
    • 7.4.2. Requirements for phosphors in LEDs
    • 7.4.3. Table of phosphor materials
    • 7.4.4. Search for narrow FWHM red phosphors
    • 7.4.5. Common and emerging red-emitting phosphors
    • 7.4.6. Red phosphor options: TriGainTM from GE
    • 7.4.7. Reliability of TriGain
    • 7.4.8. Commercial progress of GE's narrowband red phosphor
    • 7.4.9. Small sized PFS phosphor
    • 7.4.10. Red phosphor options: Sr[LiAl3N4]:Eu2+ (SLA) red phosphor
    • 7.4.11. Thermal stability of common RGY phosphors
    • 7.4.12. Narrow band green phosphor
    • 7.4.13. High performance organic phosphors
    • 7.4.14. Toray's organic colour conversion film
    • 7.4.15. Colour coverage of Toray's colour conversion films
    • 7.4.16. Stability of Toray's colour conversion films
    • 7.4.17. Response time feature of Toray's colour conversion films
    • 7.4.18. Suppliers of phosphors
  • 7.5. Quantum dot approach
    • 7.5.1. Introduction to quantum dots
    • 7.5.2. Value propositions of QDs in displays
    • 7.5.3. Quantum dots used for micro-LED displays
    • 7.5.4. QDs vs. phosphors: particle size
    • 7.5.5. QDs vs. phosphors: response time
    • 7.5.6. QDs vs. phosphors: colour tunability
    • 7.5.7. QDs vs. phosphors: stability
    • 7.5.8. QDs vs. phosphors: FWHM
    • 7.5.9. Pros and cons of QD converters
    • 7.5.10. Basic requirements of QDs for micro-LED displays
    • 7.5.11. Trade-off between efficiency and leakage
    • 7.5.12. Efficiency drop and red shift
    • 7.5.13. Thickness of the QD layer for absorption
    • 7.5.14. Display structure with QDs
    • 7.5.15. Polarizers, short-pass filters, and other additional layers?
    • 7.5.16. High blue absorptive QD materials
    • 7.5.17. QD converters for μLED displays
    • 7.5.18. Inkjet printing used for colour filters
    • 7.5.19. Ink-jet printed QD colour converters
    • 7.5.20. Curing methods
    • 7.5.21. Inkjet printed QD
    • 7.5.22. DIC's work
    • 7.5.23. Photolithography process
    • 7.5.24. QD photoresist fabrication
    • 7.5.25. Photoresist approach
    • 7.5.26. Successive patterning of red and green QD of various sizes
    • 7.5.27. QD photoresist
    • 7.5.28. Quantum-dots colour conversion layer
    • 7.5.29. Full-colour emission of quantum-dot-based micro-LED display by aerosol jet technology
    • 7.5.30. Electrohydrodynamic jet printing
    • 7.5.31. Taiwan Nanocrystals: photo-patternable QDs for μLED displays
  • 7.6. Quantum well approach
    • 7.6.1. Quantum wells
    • 7.6.2. Conclusions

8. LIGHT MANAGEMENT

  • 8.1. Light management approach summary
  • 8.2. Layers to optimize current distribution for better light extraction
  • 8.3. InfiniLED's approach to increase light extraction efficiency
  • 8.4. Methods to capture light output
  • 8.5. Micro-catadioptric optical array for better directionality

9. BACKPLANES AND DRIVING

  • 9.1. Backplane and driving options for Micro-LED displays
  • 9.2. Introduction to metal oxide semiconductor field-effect transistors
  • 9.3. Introduction to thin film transistors
  • 9.4. Introduction to complementary metal oxide semiconductor
  • 9.5. Introduction to backplane
  • 9.6. TFT materials
  • 9.7. Pixel driving for OLED
  • 9.8. LCD pixel structure
  • 9.9. TFT backplane
  • 9.10. Passive matrix addressing
  • 9.11. Passive driving structure
  • 9.12. Active matrix addressing
  • 9.13. Comparison between PM and AM addressing
  • 9.14. Transistor-micro-LED connection design
  • 9.15. Driving for micro-LEDs
  • 9.16. Pulse width modulation
  • 9.17. PAM vs. PWM
  • 9.18. Driving voltage
  • 9.19. Driving vs. EQE
  • 9.20. RGB driver
  • 9.21. Active matrix micro-LEDs with LTPS TFT backplane
  • 9.22. Conclusion

10. IMAGE QUALITY IMPROVEMENT, POWER CONSUMPTION REDUCTION AND OTHER DESIGNS

  • 10.1. Image Quality Improvement
    • 10.1.1. TFT-based image uniformity issues
    • 10.1.2. LED binning
    • 10.1.3. Drive design
    • 10.1.4. Optical compensation
    • 10.1.5. Drive compensation
  • 10.2. Power Consumption Reduction
    • 10.2.1. LED and TFT
    • 10.2.2. Drive mode optimization
    • 10.2.3. Backplane optimization

11. MINI-LED DISPLAYS

  • 11.1. Mini-LED display configurations
  • 11.2. What kind of role is mini-LED playing?
  • 11.3. MiniLEDs, real hope for 2021 onward?
  • 11.4. Trends of Mini-LED displays

12. COST ANALYSIS

  • 12.1. Cost basics
  • 12.2. Micro-LED cost vs. Die size
  • 12.3. Cost assumption
  • 12.4. Cost analysis
  • 12.5. Economics of micro-LED: cost down paths

13. MARKET ANALYSIS

  • 13.1. Forecast approaches and assumptions
  • 13.2. Market forecast of shipment unit
  • 13.3. 2026 & 2031 application market share
  • 13.4. Market forecast analysis
  • 13.5. Wafer value forecast

14. PARTNERSHIPS, MERGES, ACQUISITIONS AND JOINT VENTURE

  • 14.1. Display cycle
  • 14.2. Benefits
  • 14.3. Epistar & Leyard
  • 14.4. PlayNitride & RIT Display
  • 14.5. Konka & Chongqing Liangshan Industrial Investment, Konka & LianTronics
  • 14.6. BOE & Rohinni
  • 14.7. Lextar & X Display
  • 14.8. JDI & glo, Kyocera & glo
  • 14.9. Seoul Semiconductors & Viosys
  • 14.10. Kulicke & Soffa and Uniqarta

15. PLAYERS AND CASE STUDIES

  • 15.1.1. Players discussed in this report
  • 15.2. Aledia
    • 15.2.1. Aledia: introduction
    • 15.2.2. Scalability to larger silicon substrate
    • 15.2.3. Aledia's quasi-fabless business model
    • 15.2.4. Integration process of Aledia's WireLED display
    • 15.2.5. Wafer uniformity of nanowires
    • 15.2.6. Colour conversion of WireLEDs
    • 15.2.7. Interconnection options
    • 15.2.8. Aledia's display modules
  • 15.3. ALLOS Semiconductors
    • 15.3.1. ALLOS Semiconductors: introduction
    • 15.3.2. Strain management and emission uniformity
    • 15.3.3. Strain management
    • 15.3.4. Aoto Electronics
  • 15.4. Apple
    • 15.4.1. Apple
    • 15.4.2. Apple's new Micro-LED chiplet architecture
    • 15.4.3. AU Optronics
  • 15.5. AU Optronics
    • 15.5.1. AUO's LTPS TFT driven micro-LED display
  • 15.6. BOE
    • 15.6.1. Speeding up towards mini- and micro-LED displays
    • 15.6.2. BOE mini-LED Backlight
    • 15.6.3. BOE Mini LED Display
  • 15.7. CEA-Leti
    • 15.7.1. CEA-Leti: introduction
    • 15.7.2. Demos by hybridization technology
    • 15.7.3. Display performance
    • 15.7.4. Process of fabricating hybridization micro-displays
    • 15.7.5. Process of fabricating monolithic micro-displays
    • 15.7.6. Novel approach for monolithic display fabrication
  • 15.8. Chengdu Vistar Optoelectronics
    • 15.8.1. Chengdu Vistar Optoelectronics
  • 15.9. EpiPix
    • 15.9.1. Introduction of EpiPix
    • 15.9.2. EpiPix's technique
  • 15.10. glo
    • 15.10.1. Introduction of glo
    • 15.10.2. Glo's technology
    • 15.10.3. Glo's prototypes
  • 15.11. ITRI
    • 15.11.1. ITRI development of micro-LEDs
    • 15.11.2. ITRI's progress
    • 15.11.3. ITRI's offering
    • 15.11.4. Micro-LED device characteristics
    • 15.11.5. Reliability test
    • 15.11.6. ITRI's MicroLED displays
    • 15.11.7. ITRI's transparent MicroLED displays
    • 15.11.8. ITRI
  • 15.12. Jade Bird Display
    • 15.12.1. Jade Bird Display: introduction
    • 15.12.2. Existing hybrid integration technology by flip chip technique
    • 15.12.3. Device fabrication
    • 15.12.4. Device structure and architecture
    • 15.12.5. micro-LEDs for the JBD's micro-displays
    • 15.12.6. JBD's monochromatic AM micro-LED micro-displays
    • 15.12.7. AM micro-LED with directional emission
    • 15.12.8. Application: 3 colour LED projector
    • 15.12.9. High PPI AM micro-LED micro-display
    • 15.12.10. AM micro-LED chips
    • 15.12.11. Prototype for AR/VR
  • 15.13. Japan Display Inc. (JDI)
    • 15.13.1. JDI's prototype
  • 15.14. Konka
    • 15.14.1. Konka's efforts on Micro-LED displays
    • 15.14.2. Konka's smart watch
  • 15.15. Kyocera
    • 15.15.1. Kyocera: high PPI micro-LED display
    • 15.15.2. Kyocera: display design
  • 15.16. LG
    • 15.16.1. Micro LED Signage
  • 15.17. Lumens
    • 15.17.1. Lumens' micro-LED displays
    • 15.17.2. Lumen's prototypes
  • 15.18. Lumiode
    • 15.18.1. Lumiode: introduction
    • 15.18.2. Lumiode approach, process details
    • 15.18.3. Lumiode's micro-LED performance
    • 15.18.4. Lumiode's device performance
  • 15.19. Micro Nitride
    • 15.19.1. Micro Nitride: Introduction
    • 15.19.2. Micro Nitride's technology
  • 15.20. Mikro Mesa
    • 15.20.1. About Mikro Mesa
    • 15.20.2. Mikro Mesa's micro-LEDs
    • 15.20.3. Mikro Mesa: Current injection
  • 15.21. Nanjing CEC Panda FPD Technology
    • 15.21.1. Introduction of CEC Panda
    • 15.21.2. Micro-LED and oxide development of Panda
  • 15.22. Plessey
    • 15.22.1. Plessey: GaN-on-Silicon
    • 15.22.2. Plessey's display development roadmap
    • 15.22.3. LED manufacturing
    • 15.22.4. Pixel development
    • 15.22.5. RGB GaN on silicon
    • 15.22.6. Plessey's core development
    • 15.22.7. Prototype
  • 15.23. PlayNitride
    • 15.23.1. PlayNitride: Introduction
    • 15.23.2. Role of PlayNitride at micro-LED ecosystem
    • 15.23.3. PlayNitride timeline
    • 15.23.4. PlayNitride's application market
    • 15.23.5. PixeLED display structure
    • 15.23.6. PixeLED MatrixTM tiling display technology
    • 15.23.7. PlayNitride: Prototypes
  • 15.24. Rohinni
    • 15.24.1. Introduction of Rohinni
    • 15.24.2. Technology
    • 15.24.3. Product benefits example
  • 15.25. Samsung
    • 15.25.1. Samsung left LCD business
    • 15.25.2. The Wall vs. The Window
    • 15.25.3. LED Cinema Screen
    • 15.25.4. Samsung's MicroLED Home Screen at CES 2021
    • 15.25.5. Samsung's QNED
    • 15.25.6. Price of Samsung TVs
    • 15.25.7. RGB one chip
  • 15.26. Saphlux
    • 15.26.1. Saphlux: introduction
    • 15.26.2. NPQD technology
  • 15.27. Sharp
    • 15.27.1. Sharp: introduction
    • 15.27.2. Process flow of Silicon Display
    • 15.27.3. Display driver
    • 15.27.4. Monolithic micro-LED array
    • 15.27.5. Full colour realization
    • 15.27.6. Prototypes made by Sharp
    • 15.27.7. New spin-off
  • 15.28. Sony
    • 15.28.1. Sony: initial efforts
    • 15.28.2. Sony: scalable display system
    • 15.28.3. Sony: precise tiling
    • 15.28.4. Sony: micro-LEDs
    • 15.28.5. Sony: viewing angle advantages
    • 15.28.6. Sony: active matrix driving with micro IC
    • 15.28.7. Sony: HDR reproducibility
    • 15.28.8. Sony: business strategy
  • 15.29. Stan (Shenzhen) Technology
    • 15.29.1. Stan Technology
  • 15.30. TCL/CSOT
    • 15.30.1. The Cinema Wall
    • 15.30.2. TFT backplane-based micro-LED displays
    • 15.30.3. TCL CSOT Mini LED roadmap
  • 15.31. Visionox
    • 15.31.1. Visionox's planning
  • 15.32. VueReal
  • 15.33. VueReal: introduction
  • 15.34. VueReal: high efficiency micro-LEDs
  • 15.35. VueReal: Inspection
  • 15.36. VueReal: curing
  • 15.37. VueReal: prototypes

16. APPENDIX

  • 16.1. Colours and pixels
  • 16.2. What is resolution?
  • 16.3. Pixel pitch and fill factor
  • 16.4. EQE and IQE
  • 16.5. 3D colour volume
  • 16.6. LCD panel structure
  • 16.7. Active matrix-LCD structure