市场调查报告书

新一代功率半导体:市场,材料,技术

Power Semiconductors: Markets, Materials and Technologies

出版商 Information Network 商品编码 223488
出版日期 内容资讯 英文
商品交期: 2-3个工作天内
价格
新一代功率半导体:市场,材料,技术 Power Semiconductors: Markets, Materials and Technologies
出版日期: 2020年06月01日内容资讯: 英文
简介

在矽基的既有功率半导体已接近其理论上的界限中,具有出色材料特性及大能隙的碳化矽(SiC)和氮化镓(GaN)基功率半导体大大可望成为新一代功率半导体,其中IGBT和Power MOSFET更预测将成为市场成长原动力。功率半导体的市场规模预计从2011年的142亿美元扩大到2013年的167亿美元,这期间预测年平均成长率将为3.7%。此外新一代功率半导体市场由于大幅成长,预测将惠及加工设备业界,尤其是矽基板上的GaN磊晶成长流程相关的设备厂商和覆晶产业的设备厂商,预测皆能获得佳绩。

本报告涵盖新一代功率半导体市场,提供您以再生能源和电动车为首的用途和半导体市场上的地位及今后成长领域等详细分析,再加上SiC和GaN的下一代半导体的制造技术和今后的课题,主要企业简介等资讯。

第1章 简介

  • 差异化要素制造流程
  • 与传统的MOS设备不同的层积结构设备
  • 超接面流程

第2章 功率半导体的用途

  • 再生能源领域的功率半导体
    • 太阳能光电发电
    • 风力发电
  • 混合动力汽车/电动车领域的功率半导体
    • 汽车产业的大流程
    • 能隙的大设备
  • LED照明领域的功率半导体
  • 产业用马达驱动装置领域的功率半导体
  • 智慧家庭市场功率半导体
  • GaN及SiC的最终用途市场预测

第3章 市场分析

  • 半导体市场上功率半导体的地位
  • IGBT和Power MOSFET的潜在成长性
  • 最终用途市场
  • 能隙大的功率半导体市场

第4章 新一代功率半导体

  • 对于克服矽限制的期待感
  • 对下一代基板的SiC和GaN的期待感
  • 能隙大的半导体优点
  • SiC和GaN比较
    • 材料特性
    • 材料品质
    • SiC横型单元
    • SiC纵型单元
    • GaN横(侧)型单元
  • SiC设备的制造
    • SiC的散装单结晶成长和磊晶成长
    • 表面处理
    • 蚀刻
    • 光刻
    • 离子布植
    • 表面稳定化
    • 金属化
  • GaN设备的制造
    • GaN的课题
      • 价格
      • 可靠性
      • 零组件的包装和耐热性
      • 管理
      • 设备建模
    • 包装

第5章 主要企业简介

  • 功率半导体厂商
    • Infineon
    • 三菱电机
    • 东芝
    • STMicroelectronics
    • Vishay
    • International Rectifier
    • Fairchild
    • 富士电机
    • 瑞萨
    • Semikron
    • NXP Semiconductors
  • SiC晶圆相关的企业
  • GaN晶圆相关的企业
  • 推进新一代功率半导体开发的企业简介
    • 三菱电机
    • 富士电机集团
    • 东芝
    • Rohm
    • Sankei电气
    • 新电元工业
    • Infineon
    • Microsemi
    • Cree
    • GeneSiC Semiconductor
    • Semisouth Laboratories
    • United Silicon Carbide
    • MicroGaN
    • Powerex
    • Fairchild
    • International Rectifier
    • Nitronix

图表

目录

The rapid growth of the power semiconductor market in recent years has been driven by the proliferation of computer and consumer electronics, such as desktop computers, notebooks, netbooks, smartphones, flat panel displays and portable media players that require sophisticated power management to improve power efficiency and extend battery life. The worldwide markets are analyzed and projected.

The commercial battle for next-generation power semiconductors is evolving. IGBTs, SiC and other technologies are geared for the niche-oriented markets at 1,700 volts and higher. But what is the best technology for the larger 600- and 1,200-volt markets? Both super-junction MOSFETs and IGBTs are ramping up on 300mm wafers, making them less expensive than GaN and SiC. In comparison, SiC MOSFETs are ramping up on 100mm wafers, while GaN-on-silicon is running on 150mm substrates.

This report analyzes and forecasts the traditional power semiconductor market as well as next generation devices. Market shares of vendors by type are presented

Table of Contents

Chapter 1 Introduction

  • 1.1 Manufacturing Processes Are Differentiation Factors
  • 1.2 Vertical Structure Devices Differ From Usual MOS Planar Structure
  • 1.3 Super Junction Processes

Chapter 2 Applications of Power Semiconductors

  • 2.1 Power Semiconductors in Renewable Energy
    • 2.1.1 Solar
    • 2.1.2 Wind
  • 2.2 Power Semiconductors in Hybrid & Electric Vehicles
    • 2.2.1 Automotive Megatrends
    • 2.2.2 Wide Bandgap Devices for HEVs/EVs
  • 2.3 Power Semiconductors in LED Lighting
  • 2.4 Power Semiconductors in Industrial Motor Drives
  • 2.5 Power Semiconductors in Smart Home Market
  • 2.6 GaN and SiC Market Forecast For End Applications

Chapter 3 Market Analysis

  • 3.1 Position of Power Semiconductors in Semiconductor Market
  • 3.2 Growth Potential of IGBTs and Power MOSFETs
  • 3.3 End Application Markets
  • 3.4 Wide Bandgap Power Semiconductor Market

Chapter 4 Next-Generation Power Semiconductors

  • 4.1 Expectations for Overcoming Silicon's Limitations
  • 4.2 Expectations Of SiC and GaN as Next-Generation Substrates
  • 4.3 Benefits of Wide Band Gap Semiconductors
  • 4.4 SiC versus GaN
    • 4.4.1 Material Properties
    • 4.4.2 Material Quality
    • 4.4.3 SiC Lateral Devices:
    • 4.4.4 SiC Vertical Devices
    • 4.4.5 GaN Lateral Devices
  • 4.5 Fabrication of SiC devices
    • 4.5.1 Bulk and Epitaxial Growth of SiC
      • 4.5.1.1 Bulk Growth
      • 4.5.1.2 Epitaxial Growth
      • 4.5.1.3 Defects
    • 4.5.2 Surface Preparation
    • 4.5.3 Etching
    • 4.5.4 Lithography
    • 4.5.5 Ion Implantation
    • 4.5.6 Surface Passivation
    • 4.5.7 Metallization
  • 4.6 Fabrication of GaN devices
    • 4.6.1 GaN Challenges
      • 4.6.1.1 Costs
      • 4.6.1.2 Reliability
      • 4.6.1.3 Component Packaging and Thermal Reliability
      • 4.6.1.4 Control
      • 4.6.1.5 Device Modeling
  • 4.7 Packaging

Chapter 5 Company Profiles

  • 5.1 Power Semiconductor Companies
    • 5.1.1 Infineon
    • 5.1.2 Mitsubishi
    • 5.1.3 Toshiba
    • 5.1.4 STMicroelectronics
    • 5.1.5 Vishay
    • 5.1.6 International Rectifier
    • 5.1.7 Fairchild
    • 5.1.8 Fuji Electric
    • 5.1.9 Renesas
    • 5.1.10 Semikron
    • 5.1.11 NXP Semiconductors
  • 5.2 SiC Wafer-Related Companies
  • 5.3 GaN Wafer-Related Companies
  • 5.4 Profiles of Companies with Next-Generation Activities
    • 5.4.1 Mitsubishi Electric
    • 5.4.2 Fuji Electric Holdings
    • 5.4.3 Toshiba
    • 5.4.4 Rohm
    • 5.4.5 Sanken Electric
    • 5.4.6 Shindengen Electric
    • 5.4.7 Infineon
    • 5.4.8 Microsemi
    • 5.4.9 Cree
    • 5.4.10 GeneSiC Semiconductor
    • 5.4.11 Semisouth Laboratories
    • 5.4.12 United Silicon Carbide
    • 5.4.13 MicroGaN
    • 5.4.14 Powerex
    • 5.4.15 Fairchild
    • 5.4.16 International Rectifier
    • 5.4.17 Nitronix

List of Tables

  • 1.1 Evolution Of IGBT Chip Structure
  • 1.2 Effects Of Miniaturization Of IGBT Chip
  • 1.3 SiC Trench-Type MOSFET And Resistance Reduction As Compared With DMOSFET
  • 1.4 Planar And Vertical (Trench) MOSFET
  • 1.5 Schematic Of A FinFET
  • 1.6 Schematic Of A MOSFET And Super Junction MOSFET
  • 1.7 Process Flow For Super Junction MOSFET
  • 2.1 Forecast Of Solar Power
  • 2.2 Full Bridge IGBT Topology
  • 2.3 PV Inverter Market Distribution
  • 2.4 Block Diagram Of Microcontroller-Based Inverter
  • 2.5 Worldwide Wind Turbine Shipments
  • 2.6 Top Wind Power Capacity by Country
  • 2.7 Bill Of Materials For A Typical 30-50kw Inverter
  • 2.8 A Simple Diagram Of A HEV Traction Drive System.
  • 2.9 A More Complex Diagram Of PEEM In A Plug-In Hybrid Electric Vehicle (PHEV)
  • 2.10 Conducting And Switching Loses For Inverter
  • 2.11 Unit Pricing Trends In Power Semiconductors
  • 2.12 HEV/EV Shipment Forecast
  • 2.13 System And Component Costs For Wide Bandgap Semiconductors
  • 2.14 Vertical And Lateral HEMY
  • 2.15 GaN Lateral And GaN Vertical HEMTs In EVs
  • 2.16 Market Drivers For LED Biz And Applications
  • 2.17 SSL Vs. Classical Technologies
  • 2.18 LED Performance Vs. Traditional Light Sources
  • 2.19 Energy Production And Use Comparison
  • 2.20 Typical LED Drive Circuit
  • 2.21 Integration Of LED And LED Driver Using TSV
  • 2.212 Simple Power MOSFET Motor Controller
  • 2.23 Basic Operating Principle Of Inverter
  • 2.24 System Block Diagram Of An Air Conditioner
  • 3.1 Mitsubishi's IGBT (Insulated Gate Bipolar Transistor) Generations
  • 3.2 Infineon's MOSFET Generations
  • 3.3 Intel's FinFET Design
  • 3.4 Fuji's MOSFET versus Super Junction MOSFET
  • 3.5 NEC's GaN-on-Si Power Transistor
  • 3.6 Fujitsu's GaN-on-SiC HEMT Transistor
  • 3.7 Power Semiconductor Market Forecast
  • 3.8 Power Semiconductor Market Shares
  • 3.9 IGBT Module Market Shares
  • 3-10 IGBT Discrete Market Shares
  • 3.11 MOSFET Market Shares
  • 3.12 Market Shares For Super Junction MOSFET
  • 3.13 SJ MOSFETs as an Interim Solution
  • 3.14 Power Transistor Market Share By Application
  • 3.15 Power Discrete Market For Renewable Energy
  • 3.16 Power Discrete Market Hybrid For and Electric Vehicles
  • 3.17 Power Discrete Market For General LED Lighting
  • 3.18 Power Discrete Market For Industrial Motor Control
  • 3.19 Forecast of Widebandgap Semiconductor Market
  • 4.1 Silicon-Based Devices Reaching Maturity
  • 4.2 Enhancement Mode GaN On Si Transistor
  • 4.3 AlGaN/GaN HEMT, GaN MOSFET, MOS-HEMT
  • 4.4 GaN HEMT Material Structure On Si Substrate
  • 4.5 Power Package Integration Roadmap

List of Figures

  • 2.1 Product Families And The Principal End Uses Of Power Products
  • 2.2 Advantages And Disadvantages Of GaN Lateral HEMTs
  • 2.3 Light Source Comparison
  • 2.4 Forecast Of GaN And SiC Power Devices By End Applications
  • 3.1 Market Shares For Japanese Companies
  • 4.1 Physical Properties Of Select Semiconductor Materials
  • 4.2 Wide Bandgap Material Properties
  • 4.3 Lattice Constant And CTE Of Semiconductor Starting Material
  • 4.4 GaN FET Vs Si MOSFET Characteristics
  • 4.5 Standard Chemical Solution For Surface Preparation Of SiC Substrates
  • 4.6 Interface Trap Densities For 4H-SiC Under Different Process Conditions.